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OA 1 Omitted Proofs from the Appendix

OA 1.1 Proof of Proposition 2

Proof. (1) Suppose µ is two-part linear with µ(x) = x for x ≥ 0, µ(x) = λx for x < 0,
where λ ≥ 0. Suppose v(cA) = 1, v(cB) = 0. In each period, E[µ(πt − πt−1)] = E[(πt −
πt−1)+ − λ(πt − πt−1)−]. By the martingale property, E[(πt − πt−1)+] = E[(πt − πt−1)−],
so E[µ(πt − πt−1)] = 1

2(1 − λ)E[|πt − πt−1|]. This shows total expected news utility is
E[∑T

t=1 µ(πt − πt−1)] = 1
2(1 − λ)E[∑T

t=1 |πt − πt−1|]. Note that E[∑T
t=1 |πt − πt−1|] is strictly

larger for gradual information than for one-shot information. If λ > 1, the agent strictly
prefers one-shot information. If 0 ≤ λ < 1, the agent strictly prefers gradual information. If
λ = 1, the agent is indifferent.

Now suppose v(cA) = 0, v(cB) = 1. By the same arguments, total expected news utility is
E[∑T

t=1 µ(ρt−ρt−1)] = 1
2(1−λ)E[∑T

t=1 |ρt−ρt−1|]. Note that E[∑T
t=1 |ρt−ρt−1|] is strictly larger

for gradual information than for one-shot information. So again, if λ > 1, the agent strictly
prefers one-shot information. If 0 ≤ λ < 1, the agent strictly prefers gradual information. If
λ = 1, the agent is indifferent.

(2) Anticipatory utility. If u is linear, then the agent is indifferent between gradual and
one-shot information regardless of the sign of v(cA)− v(cB). If u is strictly concave, then for
1 ≤ t ≤ T − 1, E[u(πt)] < u(π0) and E[u(ρt)] < u(ρ0) by combining the martingale property
and Jensen’s inequality. So the agent strictly prefer to keep his prior beliefs until the last
period and will therefore choose one-shot information, regardless of the sign of v(cA)−v(cB).

(3) Suspense and surprise. Ely, Frankel, and Kamenica (2015) mention a “state-dependent”
specification of their surprise and suspense utility functions. With two states, A and B, their
specification uses weights αA, αB > 0 to differentially re-scale belief-based utilities for move-
ments in the two different directions. Specifically, their re-scaled suspense utility is

T−1∑
t=0

u
(
Et
[
αA · (πt+1 − πt)2 + αB · (ρt+1 − ρt)2

])
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and their re-scaled surprise utility is

E
[
T∑
t=1

u
(
αA · (πt+1 − πt)2 + αB · (ρt+1 − ρt)2

)]
.

Wemay consider agents with opposite preferences over states A and B as agents with different
pairs of scaling weights (αA, αB). Specifically, say there are αHigh > αLow > 0. For an agent
preferring A, αA = αHigh, αB = αLow. For an agent preferring B, αA = αLow, αB = αHigh. But
note that we always have πt+1 − πt = −(ρt+1 − ρt), so along every realized path of beliefs,
(πt+1 − πt)2 = (ρt+1 − ρt)2. This means these two agents with the opposite scaling weights
actually have identical objectives and therefore will have the same preference over gradual
or one-shot information.

OA 1.2 Proof of Proposition 3

Proof. We first justify by backwards induction that the value function is indeed given by
U∗t (x) = (cavUt(· | x)) (x), for all x ∈ ∆(Θ) and all t ≤ T − 1, and that it is continuous in x.

If the receiver enters period t = T − 1 with the belief x ∈ ∆(Θ), the sender faces the
following maximization problem.

[QT−1] max
η∈∆(∆(Θ)),E[η]=x

∫
∆(Θ)

UT−1(p | x)dη(p).

This is because any sender strategy σT−1 induces a Bayes plausible distribution of posterior
beliefs, η with E[η] = x, and conversely every such distribution can be generated by some
sender strategy, as in Kamenica and Gentzkow (2011). It is well-known that the value
of problem QT−1 is (cavUT−1(· | x)) (x), justifying U∗T−1(x) as the value function for any
x ∈ ∆(Θ). The objective in QT−1 is continuous in p (by assumption on N) and hence in η,
and furthermore the constraint set {η ∈ ∆(∆(Θ)) : E[η] = x} is continuous in x. Therefore,
x 7→ U∗T−1(x) is continuous by Berge’s Maximum Theorem.

Assume that we have shown that value function is continuous and given by U∗t (x) for all
t ≥ S. If the receiver enters period t = S − 1 with belief x, then the sender’s value must be:

[Qt] max
η∈∆(∆(Θ)),E[η]=x

∫
∆(Θ)

N(p | x) + U∗t+1(p)dη(p)

using the inductive hypothesis that U∗t+1(p) is the period t + 1 value function. But N(p |
x) + U∗t+1(p) = Ut(p | x) by definition, and it is continuous by the inductive hypothesis. So
by the same arguments as in the base case, U∗S−1(x) is the time-(S − 1) value function and
it is continuous, completing the inductive step.
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In the first period, by Carathéodory’s theorem, there exist weights w1, ..., wK ≥ 0, beliefs
q1, ..., qK ∈ ∆(Θ), with ∑K

k=1w
k = 1, ∑K

k=1w
kqk = x, such that U∗1 (π0) = ∑K

k=1w
kU1(qk |

π0). Having now shown U∗2 is the period-2 value function, there must exist an optimal
information structure where σ1(· | θ) induces beliefs qk with probability wk. This information
structure induces one of the beliefs q1, ..., qK in the second period. Repeating the same
procedure for subsequent periods establishes the proposition.

OA 1.3 Proof of Corollary 1

Proof. We verify Proposition 4’s condition µ(1−v0)−µ(−v0)+µ′(0+)−µ′(1−v0)+µ(−1) > 0,
which is equivalent to µ′(0+) + µ(1− π0)− µ(−π0) > −µ(−1) + µ

′(1− π0). We have that

LHS = αp + αp(1− π0)− βp(1− π0)2 − [βnπ2
0 − αnπ0]

RHS = [−βn + αn] + [αp − 2βp(1− π0)]

By algebra, LHS −RHS = (1− π0)(αp − αn) + (1− π2
0)(βp + βn). Given that (αn − αp) ≤

(βp + βn) and 1− π2
0 > 1− π0 for 0 < π0 < 1,

LHS −RHS > −(1− π2
0)(βp + βn) + (1− π2

0)(βp + βn) = 0.

OA 1.4 Proof of Corollary 2

Proof. This follows from Proposition 4 because µ′(0+) =∞ for the power function.

OA 1.5 Proof of Proposition 5

Proof. Suppose Θ = {θ1, ..., θK} and assume without loss the states are associated with
consumption levels c1 < ... < cK .

Let the message space be M = {m1, ...,mK ,m∗}. In the first period,

• σ1(mk | θk) = 1 for 1 ≤ k ≤ K − 2,

• σ1(m∗ | θK−1) = 1,

• σ1(m∗ | θK) = π0(θK−1)
1−π0(θK) ,

• σ1(mK | θK) = 1− σ1(m∗ | θK).
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Figure OA.1: New belief about consumption after the muddled message m∗ in an environ-
ment with 4 states, compared with the old belief given by the prior π0.

So, message mk perfectly reveals state θk, whereas m∗ is a “muddled” message that implies
the state is either θK−1 or θK . By simple algebra, the probability that the receiver assigns
to state θK after m∗ is the same as the prior belief,

P[θK | m∗] = π0(θK) · σ1(m∗ | θK)
π0(θK) · σ1(m∗ | θK) + π0(θK−1) · 1 = π0(θK).

In the second period, the information structure perfectly reveals the true state regardless
of the last message, σ2(mk | θk) = 1 for all 1 ≤ k ≤ K.

To compute the news utility of the muddled message m∗, note that at percentiles p ∈
[0, π0(θ1)), the change in p-percentile consumption utility is v(cK−1)−v(c1). Similarly, for 2 ≤
k ≤ K−2, the change in consumption utility at percentile p ∈

[∑k−1
j=1 π0(θj), π0(θk) +∑k−1

j=1 π0(θj)
)

is v(cK−1)− v(ck). There are no changes at percentiles above ∑K−2
j=1 π0(θj).

If θ = θK−1, total news utility from receiving m∗ then mK−1 is
[
K−2∑
k=1

π0(θk) · µ(v(cK−1)− v(ck))
]

︸ ︷︷ ︸
from m∗ in period 1

+ π0(θK) · µ(v(cK−1)− v(cK))︸ ︷︷ ︸
from mK−1 in period 2

.

This is identical to the news utility from one-shot resolution in state θK−1. Similarly, the
information structure just constructed gives the same news utility as one-shot resolution
when the state is θk for 1 ≤ k ≤ K − 2, and when the state is θK and the receiver gets mK

in period 1.
When the receiver sees m∗ in period 1 and mK in period 2 in state θK , an event that

happens with strictly positive probability since π0(θK−1) < 1 − π0(θK) as K ≥ 3, he gets
strictly more news utility than from one-shot resolution.
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If θ = θK , total news utility from receiving m∗ then mK is
[
K−2∑
k=1

π0(θk) · µ(v(cK−1)− v(ck))
]

︸ ︷︷ ︸
from m∗ in period 1

+
[
K−1∑
k=1

π0(θk) · µ(v(cK)− v(cK−1))
]

︸ ︷︷ ︸
from mK in period 2

,

while one-shot resolution gives ∑K−1
k=1 π0(θk) · µ(v(cK) − v(ck)). For each 1 ≤ k ≤ K − 2

(non-empty since K ≥ 3),

µ(v(cK)− v(cK−1)) + µ(v(cK−1)− v(ck)) > µ(v(cK)− v(ck))

by sub-additivity in gains. This shows the constructed information structure gives strictly
more news utility.

OA 1.6 Proof of Corollary 3

We first state a sufficient condition for the sub-optimality of information structures with
partial bad news with T = 2. Consider the chord connecting (0, U1(0 | π0)) and (π0, U1(π0 |
π0)) and let `(x) be its height at x ∈ [0, π0]. Let D(x) := `(x)− U1(x | π0).

Lemma OA.1. For this chord to lie strictly above U1(p | π0) for all p ∈ (0, π0), it suffices
that D′(0) > 0, D′(π0) < 0, and D′′(p) = 0 for at most one p ∈ (0, π0).

Now we verify that the condition in Lemma OA.1 holds for the quadratic news utility,
which in turn verifies the condition of Proposition 7 for q = π0 and shows partial bad news
information structures to be strictly suboptimal.

Proof. Clearly, D(p) is a third-order polynomial, so D′′(p) has at most one root.
For p < π0, we have the derivative

d

dp
U(p | π0) =2βn(p− π0) + αn + αp(1− p)− βp(1− p)2

+ p(−αp + 2βp(1− p))− (βnp2 − αnp) + (1− p)(2βnp− αn)

The slope of the chord between 0 and π0 is: αp − βp + (2βp − αp + αn)π0 − (βp + βn)π2
0. So,

after straightforward algebra, D′(0) = (2(βp + βn) − (αp − αn))π0 − (βp + βn)π2
0. Applying

weak loss aversion with z = 1, αp − αn ≤ βp − βn. This shows

D
′(0) ≥ (2(βp + βn)− (βp − βn))π0 − (βp + βn)π2

0

= (βp + βn)π0(1− π0) + 2βnπ0 > 0
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for 0 < π0 < 1.
We also derive D′(π0) = (αp−2βp−2βn−αn)π0+(2βp+2βn)π2

0. Note that this is a convex
parabola in π0, with a root at 0. Also, the parabola evaluated at 1 is equal to αp − αn ≤ 0,
where the inequality comes from the weak loss aversion with z = 0. This implies D′(π0) < 0
for 0 < π0 < 1.

OA 1.7 Proof of Lemma OA.1

Proof. We need D > 0 in the region (0, π0). We know that D(0) = D(π0) = 0. Given the
conditions in the statement and the twice-differentiability of D in (0, π0) it follows that D′′

changes sign only once. Moreover, it also follows that D > 0 in a right-neighborhood of x = 0
and a left-neighborhood of x = π0. Suppose D has an interior minimum at x0 ∈ (0, π0).
Then it holds D′′(x0) ≥ 0.

Suppose D′′(x) > 0 for all small x. Then it follows x0 ≤ p, where we set p = π0 if p
doesn’t exist. Because D′′(x) ≥ 0 for all x ≤ p we have that D′(x) > 0 for all x ≤ p. In
particular also D(x) > 0 for all such x due to the Fundamental Theorem of Calculus. Thus,
the interior minimum is positive and so the claim about D in (0, π) is proven in this case.

Suppose instead that D′′(x) < 0 for all x near enough to 0. Then it follows that x0 ≥ p.
In particular, for all x > p we have D′′(x) > 0. Since the derivative is strictly increasing for
all x ∈ (x0, π0) and D′(π0) < 0 we have that D′(x) < 0 for all x ∈ (x0, π0). In particular,
from the Fundamental Theorem of Calculus, D(π0) is strictly below D(x0). Since D(π0) = 0
we have again that D(x0) > 0.

Given the boundary values of D and the signs of the derivatives at 0, π0 and that any
interior minimum of D is strictly positive, we have covered all cases and so shown that D > 0
in (0, π0).

OA 1.8 Proof of Lemma 1

Proof. Part 1. Fix a prior π0 and a pair (M̄, σ̄) which induces an equilibrium as in Definition
3. We focus on the case that |M̄ | > 2 as the other cases are trivial.

LetM = {g, b} and we will inductively define the sender’s strategy σt on t so that (M,σ)
is another equilibrium which delivers the same expected utility as (M̄, σ̄). In doing so we
will successively define a sequence of subsets of histories, H t

int ⊆ M t and H̄ t
int ⊆ M̄ t, which

are length t histories associated with interior equilibrium beliefs about the state in the new
and old equilibria, as well as a map φ that associates new histories to old ones.

Let H0
int = H̄0

int := {∅}, φ(∅) = ∅.

6



Once we have defined σt−1, H t−1
int , H̄

t−1
int and φ : H t−1

int → H̄ t−1
int , we then define σt. If

ht−1 /∈ H t−1
int , then simply let σt(ht−1, θ)(g) = 0.5 for both θ ∈ {G,B}. For each ht−1 ∈ H t−1

int ,
by the definition of H̄ t−1

int , the equilibrium belief πt−1 associated with φ(ht−1) in the old
equilibrium satisfies 0 < πt−1 < 1. Let ΦG(ht−1) and ΦB(ht−1) represent the sets of posterior
beliefs that the sender induces with positive probability in the good and bad states following
public history φ(ht−1) ∈ H̄ t−1

int in (M̄, σ̄).
We must have ΦG(ht−1)\ΦB(ht−1) ⊆ {1} and ΦB(ht−1)\ΦG(ht−1) ⊆ {0}, since any mes-

sage unique to either state is conclusive news of the state. We construct σt(ht−1, θ) based on
the following four cases.

Case 1: 1 ∈ ΦG(ht−1) and 0 ∈ ΦB(ht−1). Let σt(ht−1, G) assign probability 1 to g and let
σt(ht−1, B) assign probability 1 to b.

Case 2: 1 ∈ ΦG(ht−1) but 0 /∈ ΦB(ht−1). By Bayesian plausibility, there exists some
smallest q∗ ∈ (0, πt−1) with q∗ ∈ ΦG(ht−1) ∩ ΦB(ht−1), induced by some message m̄b ∈ M̄
sent with positive probabilities in both states. Also, some message m̄g ∈ M̄ sent with positive
probability in state G induces belief 1. Let σt(ht−1, B)(b) = 1 and let σt(∅, G)(b) = x where
x ∈ (0, 1) solves πt−1x

πt−1x+(1−πt−1) = q∗.
Case 3: 1 /∈ ΦG(ht−1) but 0 ∈ ΦB(ht−1). By Bayesian plausibility, there exists some

largest q∗ ∈ (πt−1, 1) with q∗ ∈ ΦG(ht−1) ∩ ΦB(ht−1). Let σt(ht−1, G)(g) = 1 and let
σt(ht−1, B)(g) = x where x ∈ (0, 1) solves πt−1

πt−1+(1−πt−1)x = q∗.
Case 4: 1 /∈ ΦG(ht−1) and 0 /∈ ΦB(ht−1). By Bayesian plausibility, ΦG(ht−1) = ΦB(ht−1),

and there exist some largest qL ≤ πt−1 and smallest qH ≥ πt−1 in this common set of
posterior beliefs, and further there exist x, y ∈ (0, 1) so that πt−1x

πt−1x+(1−πt−1)y = qH and
πt−1(1−x)

πt−1(1−x)+(1−πt−1)(1−y) = qL. Let σ(ht−1, G)(g) = x and σ(ht−1, B)(g) = y.

Having constructed σt, let H t
int be those on-path period t histories with interior equilib-

rium beliefs, that is ht = (ht−1,m) ∈ H t
int if and only if ht−1 ∈ H t−1

int and σ(ht−1, θ)(m) > 0
for both θ ∈ {G,B}. A property of the construction of σt is that if ht−1 ∈ H t−1

int , then both
(ht−1, g) and (ht−1, b) are on-path. That is, off-path histories can only be continuations of
histories with degenerate beliefs in {0, 1}.

Let H̄ t
int be on-path period t histories with interior equilibrium beliefs in (M̄, σ̄). By the

definition of σt, there exists m̄ ∈ M̄ so that ht induces the same equilibrium belief in the
new equilibrium as the history (φ(ht−1), m̄) ∈ H̄ t

int in the old equilibrium, and we define
φ(ht) := (φ(ht−1), m̄).

The receiver’s expected payoff in both the B and G states are the same as in the old
equilibrium. To see this, note that by our construction, the receiver’s expected payoff in
state B is the same as if we took a deterministic selection of messages m1,m2, ... in the old
equilibrium with the property that σ1(∅, B)(m1) > 0 and, for t ≥ 2, σt(m1, ...,mt−1, θ)(mt) >
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0. Then, we had the sender play message mt in period t. Since this sequence of messages is
played with positive probability in state B of the old equilibrium, it must yield the expected
payoff under B — if it yields higher or lower payoffs, then we can construct a deviation that
improves the receiver’s ex-ante expected payoffs in the old equilibrium. A similar argument
holds for state G.

It remains to check that (M,σ) is an equilibrium by ruling out one-shot deviations. We
argued before that all off-path histories must follow an on-path history with equilibrium belief
in 0 or 1. There are no profitable deviations at off-path histories or at on-path histories with
degenerate beliefs, because the receiver does not update beliefs after such histories regardless
of the sender’s play.

So consider an on-path history with a non-degenerate belief, i.e. a member ht ∈ H t
int.

A one-shot deviation following ht corresponds to a deviation following φ(ht) in (M̄, σ̄), and
must not be strictly profitable.

Part 2. We now turn to the second claim. If T ≤ T
′ , then for any equilibrium with

horizon T, we may construct an equilibrium of horizon T ′ which sends messages in the same
way in periods 1, ..., T − 1, but babbles starting in period T . This equilibrium has the same
expected payoff as the old one.

Note that the first claim of Lemma 1 also holds for the infinite horizon model of Online
Appendix OA 2.3. Nothing in the argument relies on T being finite. This is because the
proof argument relies on the one-shot deviation property which holds for equilibria in both
finite and infinite horizon models. Thus, in particular, in the proof of Proposition OA.2 we
can also focus on a binary signal space.

OA 1.9 Proof of Lemma 2

Proof. Due to sub-additivity,
µ(p) < µ(p− π) + µ(π). (2)

Note that symmetry implies µ(−p) = −µ(p) and that µ(−π) = −µ(π). Rearranged (2) is
precisely N(0; π) < N(p; π).

OA 1.10 Proof of Lemma A.1

Proof. We have ∂NG(p;π)
∂p

= µ
′(p−π)−µ′(1− p). For 0 ≤ p < π and under greater sensitivity

to losses, µ′(p−π) ≥ µ
′(π− p). Since µ′′(x) < 0 for x > 0, µ′(π− p) > µ

′(1− p). This shows
∂NG(p;π)

∂p
> 0 for p ∈ [0, π).

The symmetry results follow from simple algebra and do not require any assumptions.
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Note that ∂2NG(p;π)
∂p2 = µ

′′(p − π) + µ
′′(1 − p) < 0 for any p ∈ [π, 1], due to diminishing

sensitivity. Combined with the required symmetry, this means ∂NG(p;π)
∂p

crosses 0 at most once
on [π, 1], so for each p1 ∈ [π, 1], we can find at most one p2 so that NG(p1; π) = NG(p2; π). In
particular, this implies at every intermediate p1 ∈ (π, 1), we get NG(p1; π) > NG(π; π) since
we already have NG(1;π) = NG(π; π). This shows NG(·; π) is strictly larger on [π, 1] than on
[0, π).

A similar argument, using µ′′(x) > 0 for x < 0, establishes that for each p1 ∈ [0, π], we
can find at most one p2 so that NB(p1; π) = NB(p2; π).

OA 1.11 Proof of Lemma A.2

Proof. Suppose |PG| = 1.
If PG = {π}, then any equilibrium message not inducing π must induce 0. By the Bayes’

rule, the sender cannot induce belief 0 with positive probability in the bad state, so PB = {π}
as well.

If PG = {1}, then any equilibrium message not inducing 1 must induce 0. Furthermore,
the sender cannot send equilibrium messages inducing belief 1 with positive probability in
the bad state, else the equilibrium belief associated with these messages should be strictly
less than 1. Thus PB = {0}.

If PG = {p1} for some 0 ≤ p1 < π, then any equilibrium message not inducing p1 must
induce 0. This is a contradiction since the posterior beliefs do not average out to π.

This leaves the case of PG = {p1} for some π < p1 < 1. Any equilibrium message not
inducing p1 must induce 0. Furthermore, the sender must induce the belief p1 in the bad
state with positive probability, else we would have p1 = 1. At the same time, the sender
must also induce belief 0 with positive probability in the bad state, else we violate Bayes’
rule. So PB = {0, p1}.

Now suppose |PG| = 2.
In the good state, the sender must be indifferent between two beliefs p1, p2 both induced

with positive probability. By Lemma A.1, NG(p; π) is strictly increasing on [0, π] and strictly
higher on [π, 1] than on [0, π), while for each p1 ∈ [π, 1], there exists exactly one point p2 ∈
[π, 1] so that NG(p1; π) = NG(p2; π). This means we must have p1 ∈ [π, 1+π

2 ], p2 = 1− p1 +π.
If PG = {π, 1}, any equilibrium message not inducing π or 1 must induce 0. Also, 1 /∈ PB,

because any message sent with positive probability in the bad state cannot induce belief 1.
We cannot have PB = {0}, because then the message inducing belief π actually induces 1.
We cannot have PB = {π} for then we violate Bayes’ rule. This leaves only PB = {0, π}.

If PG = {p1, p2} for some p1 ∈ (π, 1+π
2 ), then any equilibrium message not inducing p1
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or p2 must induce 0. Also, p1, p2 ∈ PB, else messages inducing these beliefs give conclusive
evidence of the good state. By Bayes’ rule, we must have PB = {0, p1, p2}.

It is impossible that |PG| ≥ 3, since, by Lemma A.1, NG(p; π) is strictly increasing on [0, π]
and strictly higher on [π, 1] than on [0, π), while for each p1 ∈ [π, 1], there exists exactly one
point p2 ∈ [π, 1] so that NG(p1; π) = NG(p2; π). So the sender cannot be indifferent between
3 or more different posterior beliefs of the receiver in the good state.

OA 1.12 Proof of Corollary 4

Proof. First, µ exhibits greater sensitivity to losses, because µ(−x) = −λµ(x) for all x > 0
and we have λ ≥ 1.

To apply Proposition 10, we only need to verify that minz∈[0,1−π0]
µ
′ (z)

µ′ (−(π0+z)) > 1. For

the λ-scaled µ, minz∈[0,1−π0]
µ
′ (z)

µ′ (−(π0+z)) = 1
λ
· minz∈[0,1−π0]

µ̃
′
pos(z)

µ̃′pos(π0+z) . The assumption that

minz∈[0,1−π0]
µ̃
′
pos(z)

µ̃′pos(π0+z) > λ gives the desired conclusion.

OA 1.13 Proof of Corollary 5

Proof. We apply Proposition 12 to the case of quadratic news utility. Recall the relevant
indifference equation in the good state.

µ(−qt) = µ(qt+1 − qt) + µ(−qt+1). (3)

Plugging in the quadratic specification and algebraic transformations lead to

0 = (αp − αn)(qt+1 − qt)− βp(qt+1 − qt) + βn(qt+1 − qt)(qt+1 + qt)

Define r = qt+1 − qt. Then this relation can be written as

(βp − βn)r2 + (αn − αp − 2βnqt)r = 0,

i.e. r is a zero of a second order polynomial. For P ∗ to be non-empty we need this root r
to be in (0, 1 − qt). In particular the peak/trough r̄ of the parabola defined by the second
order polynomial should satisfy r̄ ∈ (0, 1−qt

2 ). Given that r̄ = 2βnqt−(αn−αp)
2(βp−βn) for the case that

βp 6= βn, we get the equivalent condition on the primitives 0 < 2βnqt−(αn−αp)
2(βp−βn) < 1−qt

2 . The
root r itself is given by r = 2βnqt−(αn−αp)

βp−βn , which leads to the recursion

qt+1 = qt
βp + βn
βp − βn

− αn − αp
βp − βn

. (4)
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This leads to the formula for P ∗(π) in part 1).
Case 1: When βp < βn the coefficient in front of qt is negative so that the recursion in

Equation (4) leads to
qt+1 − qt = qt

2βn
βp − βn

− αn − αp
βp − βn

< 0.

This also shows that for the case that βp < βn, a GGN equilibrium with 1 or more interme-
diate beliefs only exists when the prior is low enough: namely π0 <

αn−αp
2βn =: q∗.

Case 2: When βp > βn the slope in Equation (4) is above 1 so that for all priors π0 large
enough we get an increasing sequence qt which satisfies Equation (3). It is also easy to see
from Equation (4) that

(qt+2 − qt+1)− (qt+1 − qt) =
(
βp + βn
βp − βn

− 1
)
> 0,

proving the statement in the text after the corollary.
That an equilibrium can exist where partial good news are released for more than two

periods, is shown by the example in the main text following the statement of the Corollary
(see Figure 5).

OA 1.14 Proof of Corollary 6

Proof. We verify the sufficient condition in Proposition 13. We get ∂
∂p
NB(p; π) = α

(p−π)1−α −
λα
p1−α , so ∂

∂p
NB(p; π)|p=π =∞.

To show that |P ∗(π)| ≤ 1, it suffices to show that ∂
∂p
NB(p; π) = 0 for at most one p > π.

For the derivative to be zero, we need ( p
p−π )1−α = λ. As the LHS is decreasing for p > π, it

can have at most one solution.

OA 2 A Random-Horizon Model

In this section, we study a version of our information design problem without a deterministic
horizon. Each period, with probability 1−δ ∈ (0, 1], the true state of the world is exogenously
revealed to the receiver and the game ends. Until then, the informed sender communicates
with the receiver each period as in the model from Section 2. We verify that our results from
the finite-horizon setting extend analogously into this random-horizon environment.

11



OA 2.1 The Environment

Consider an environment where the consumption event takes place far in the future, but
the sender is no longer the receiver’s only source of information in the interim. Instead, a
third party perfectly discloses the state to the receiver with some probability each period.
For instance, the sender may be the chair of a central bank who has decided on the bank’s
monetary policy for next year and wishes to communicate this information over time, while
the third party is an employee of the bank who also knows the planned policy. With some
probability each period, the employee goes to the press and leaks the future policy decision.

Time is discrete with t = 0, 1, 2, ... The sender commits to an information structure (M,σ)
at time 0. The information structure consists of a finite message space M and a sequence
of message strategies (σt)∞t=1 where each σt(· | ht−1, θ) ∈ ∆(M) specifies how the sender will
mix over messages in period t as a function of the public history ht−1 so far and the true
state θ.

The sender learns the state at the beginning of period 1 and sends a message according
to σ1. At the start of each period t = 2, 3, 4, ..., there is probability (1 − δ) ∈ (0, 1] that
the receiver exogenously and perfectly learns the state θ. If so, the game effectively ends
because no further communication from the sender can change the receiver’s belief. If not,
then the sender sends the next message according to σt. The randomization over exogenous
learning is i.i.d. across periods, so the time of state revelation (i.e., the horizon of the game)
is a geometric random variable.

OA 2.2 The Value Function with Commitment

Let Vδ : [0, 1] → R be the value function of the problem with continuation probability δ —
that is, Vδ(p) is the highest possible total expected news utility up to the period of state
revelation, when the receiver holds belief p in the current period and state revelation does
not happen this period. The value function satisfies the recursion Vδ(p) = Ṽδ(p | p), where

Ṽδ(· | p) := cavq[µ(q − p) + δVδ(q) + (1− δ)(q · µ(1− q) + (1− q) · µ(−q))].

Ely (2017) studies an infinite-horizon information design problem whose value function also
involves concavification. Unlike in Ely (2017), the current belief enters the objective function
for our news-utility problem.

Our first result shows this recursion has a unique solution which increases in δ for any
fixed p ∈ [0, 1].

12
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Figure OA.2: The value function for δ = 0, 0.8, 0.95. Consistent with Proposition OA.1, the
value function is pointwise higher for higher δ.

Proposition OA.1. For every δ ∈ [0, 1), the value function Vδ exists and is unique. Fur-
thermore, Vδ(p) is increasing in δ for every p ∈ [0, 1].

Figure OA.2 illustrates this result by plotting Vδ(p) for the quadratic news utility with
αp = 2, αn = 2.1, βp = 1, and βn = 0.2 for three different values of δ : 0, 0.8, and 0.95. (In
fact, the monotonicity of the value function in δ also holds when there are more than two
states.)

The monotonicity of Vδ in δ says that when the sender is benevolent and has commitment
power, third-party leaks are harmful for the receiver’s expected welfare. This result can
be explained intuitively as follows. Just as with increasing T in the finite-horizon model,
increasing δ expands the set of implementable belief paths. The idea behind implementing
a payoff from a shorter horizon / lower δ is that the sender switches to babbling forever
after certain histories. This switching happens at a deterministic calendar time in the finite-
horizon setting but at a random time in the random-horizon setup, mimicking the random
arrival of the state revelation period.

OA 2.3 Gradual Good News Equilibria Without Commitment

Now we turn to equilibria of the random-horizon cheap talk game when the sender lacks
commitment power. Analogously to the case of finite horizon, a strict gradual good news
equilibrium (strict GGN) features a deterministic sequence of increasing posteriors q(0) <

13



q(1) < . . . such that q(0) = π0 is the receiver’s prior before the game starts and q(t) is his
belief in period t, provided state revelation has not occurred. An analog of Proposition 12
continues to hold.

Proposition OA.2. Let P ∗(π) ⊆ (π, 1] be those beliefs p satisfying NB(p; π) = NB(0; π).
Suppose µ exhibits diminishing sensitivity and loss aversion. There exists a gradual good
news equilibrium with a (possibly infinite) sequence of intermediate beliefs q(1) < q(2) < ... if
and only if q(j) ∈ P ∗(q(j−1)) for every j = 1, 2, ..., where q(0) := π0.

The P ∗ set is the same in the finite- and random-horizon environments. Corollary 6 then
implies that even in the random-horizon environment where the game could continue for
arbitrarily many periods, intermediate beliefs grow at an increasing rate in GGN equilibria
for quadratic and square-roots µ, and there exists a finite bound on the number of periods
of informative communication that applies for all δ ∈ [0, 1).

OA 2.4 Proofs

OA 2.4.1 Proof of Proposition OA.1

Proof. Consider the following operator φ on the space of continuous functions on [0, 1]. For
V : [0, 1]→ R, define φ(V )(p) := Ṽ (p | p), where

Ṽ (· | p) := cavq[µ(q − p) + δV (q) + (1− δ)(q · µ(1− q) + (1− q) · µ(−q))].

We show that φ satisfies the Blackwell conditions and so is a contraction mapping.
Suppose that V2 ≥ V1 pointwise. Then for any p, q ∈ [0, 1],

µ(q−p)+δV2(q)+(1−δ)(qµ(1−q)+(1−q)µ(−q)) ≥ (q−p)+δV1(q)+((1−δ)(qµ(1−q)+(1−q)µ(−q))

therefore Ṽ2(· | p) ≥ Ṽ1(· | p) pointwise as well. In particular, Ṽ2(p | p) ≥ Ṽ1(p | p), that is
φ(V2)(p) ≥ φ(V1)(p).

Also, let k > 0 be given and let V2 = V1 + k pointwise. It is easy to see that Ṽ2(· | p) =
Ṽ1(· | p)+δk for every p, because the argument to the concavification operator will be point-
wise higher by δk. So in particular, φ(V2)(p) = φ(V1)(p) + δk. By the Blackwell conditions,
the operator φ is a contraction mapping on the metric space of continuous functions on [0, 1]
with the supremum norm. Thus, the value function exists and is also unique.

To show pointwise monotonicity in δ, suppose 0 ≤ δ < δ
′
< 1. First, Vδ(0) = Vδ(1) = 0 for

any δ ∈ [0, 1). Now consider an environment where full revelation happens at the end of each
period with probability 1−δ, and fix a prior p ∈ (0, 1). There exists some binary information
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structure with message space M = {0, 1}, public histories H t = (M)t for t = 0, 1, ..., and
sender strategies (σt)∞t=0 with σt : H t×Θ→ ∆(M), such that (M,σ) induces expected news
utility of Vδ(p) when starting at prior p.

We now construct a new information structure, (M̄, σ̄) to achieve expected news utility
Vδ(p) when starting at prior p in an environment where full revelation happens at the end of
each period with probability 1−δ′ , with δ′ > δ. Let M̄ = {0, 1,∅}. The idea is that when full
revelation has not happened, there is a 1− δ

δ′
probability each period that the sender enters

into a babbling regime forever. When the sender enters the babbling regime at the start of
period t + 1, the receiver’s expected utility going forward is the same as if full revelation
happened at the start of t+ 1.

To implement this idea, after any history ht ∈ H t not containing ∅, let

σ̄t+1(ht; θ) =


∅ w/p 1− δ

δ′

1 w/p δ
δ′
· σt+1(ht; θ)(1)

0 w/p δ
δ′
· σt+1(ht; θ)0)

.

That is, conditional on not entering the babbling regime, σ̄ behaves in the same way as σ.
But, after any history ht ∈ H t containing at least one ∅, σ̄t+1(ht; θ) = ∅ with probability
1. Once the sender enters the babbling regime, she babbles forever (until full revelation
exogenously arrives at some random date). We need to verify that payoff from this strategy
is indeed Vδ(p). Fix a history ht not containing ∅ and a state θ, and suppose p∗(ht) = q.
Under σ̄t+1, with probability of (1 − δ′) + δ′(1 − δ

δ′
) = 1 − δ the receiver gets the expected

babbling payoff qµ(1 − q) + (1 − q)µ(−q) in the period of state revelation. Analogously,
under σt+1, there is probability 1 − δ that state revelation happens in period t + 1 and the
receiver gets qµ(1− q) + (1− q)µ(−q) in expectation. With probability δ′ δ

δ′
= δ, the receiver

facing σ̄ gets the payoff induced by σt+1(ht; θ) in period t + 1 and the same distribution
of continuation histories as under σ. The same argument applies to all these continuation
histories, so σ̄ must induce the same expected payoff as σ when starting at (ht; θ).

OA 2.4.2 Proof of Proposition OA.2

Proof. We show first sufficiency. Consider the following strategy profile. In period t where
the public history so far ht−1 does not contain any b, let σ(ht−1;G)(g) = 1, σ(ht−1;B)(g) = x

where x ∈ (0, 1) satisfies pt−1
pt−1+(1−pt−1)x = pt. But if public history contains at least one b,

then σ(ht−1;G)(b) = 1 and σ(ht−1;B)(b) = 1. In terms of beliefs, suppose ht is so that every
message so far has been g. Such histories are on-path and get assigned the Bayesian posterior
belief. If ht contains at least one b, then belief is 0. It is easy to verify that these beliefs are
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derived from Bayes’ rule whenever possible.
We verify that the sender has no incentive to deviate. Consider period t with history

ht−1 that does not contain any b. The receiver’s current belief is pt−1 by construction.
In state B, we first calculate the sender’s equilibrium payoff after sending g. For any

realization of the exogenous revelation date, the receiver’s total news utility in the good
state along the equilibrium path is given by ∑J

j=1 µ(pt−1+j − pt−2+j) + µ(−pt−1+J) for some
integer J ≥ 1. Since pt−1+J ∈ P ∗(pt−2+J), we have NB(pt−1+J ; pt−2+J) = NB(0; pt−2+J),
that is to say µ(pt−1+J − pt−2+J) + µ(−pt−1+J) = µ(−pt−2+J). We may therefore rewrite
the receiver’s total news utility as ∑J−1

j=1 µ(pt−1+j − pt−2+j) + µ(−pt−2+J). But by repeating
this argument, we conclude that the receiver’s total news utility is just µ(−pt−1). Since
this result holds regardless of J , the sender’s expected total utility from sending g today
is µ(−pt−1), which is the same as the news utility from sending b today. Thus, sender is
indifferent between g and b and has no profitable deviation.

In state G, the sender gets at least µ(1 − pt−1) from following the equilibrium strategy.
This is because for any realization of the exogenous revelation date, the receiver’s total news
utility in the good state along the equilibrium path is given by ∑J

j=1 µ(pt−1+j − pt−2+j) +
µ(1− pt−1+J) for some integer J ≥ 1. By sub-additivity in gains, this sum is strictly larger
than µ(1− pt−1). If the sender deviates to sending b today, then the receiver updates belief
to 0 today and belief remains there until the exogenous revelation, when belief updates to
1. So this deviation has the total news utility µ(−pt−1) + µ(1). We have

µ(1) < µ(1− pt−1) + µ(pt−1)

≤ µ(1− pt−1)− µ(−pt−1),

where the first inequality comes from sub-additivity in gains, and the second from weak loss
aversion. This shows µ(−pt−1) + µ(1) < µ(1− pt−1), so the deviation is strictly worse than
sending the equilibrium message.

Finally, at a history containing at least one b, the receiver’s belief is the same at all
continuation histories. So the sender has no deviation incentives since no deviations affect
future beliefs.

We now show necessity. Suppose that we have a (possibly infinite) gradual good news
equilibrium given by the sequence p0 < p1 < · · · < pt < . . . . By Bayesian plausibility and
because we are focusing on two-message equilibria the sender must be sending the messages
{0, pt} in period t if the state is bad. The sender must thus be indifferent between these two
posteriors in the bad state. Formally, NB(0; pt) = NB(pt+1; pt) for all t ≥ 0, as long as there
is no babbling. Written equivalently in the language of P ∗: pt+1 ∈ P ∗(pt) for all t ≥ 0, as
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long as there’s no babbling, where here p0 = π0.

OA 3 Additional Results about News Utility with Di-
minishing Sensitivity

OA 3.1 Preference for Dominated Consumption Lotteries

So far, we have taken the prior distribution over states π0 ∈ ∆(Θ) as exogenously given.
Fixing an information structure, a news-utility agent may strictly prefer a dominated dis-
tribution over states. This distinguishes our news-utility preference from other preferences,
such as recursive preferences and Gul, Natenzon, and Pesendorfer (2019)’s risk consumption
preference.

We now give an example. Suppose T = 2 and there are two states, Θ = {G,B}. Normalize
consumption utility to be v(cG) = 1, v(cB) = 0. Let the news utility function be µ(z) =

√
z

for z ≥ 0, µ(z) = −λ
√
−z for z < 0, where λ ≥ 1. At time t = 0, the agent holds a prior

belief π0 with π0(G) = p ∈ [0, 1]. At time t = 1, the agent learns the state perfectly, so π1

is degenerate with probability 1. Consumption takes place at time t = 2. For any λ, the
agent strictly prefers state G for sure (π0(G) = 1) over state B for sure (π0(G) = 0), as
both environments provide zero news utility. But, the agent may strictly prefer state B for
sure over an interior probability of the good state, π0(G) = p. In fact, this happens when
p + p

√
1− p − λ(1 − p)√p < 0, which says λ >

√
p(1+

√
1−p)

1−p . A sufficiently loss-averse agent
may strictly prefer no chance of winning a consumption lottery than a low chance of winning.

OA 3.2 Residual Consumption Uncertainty

OA 3.2.1 A Model of Residual Consumption Uncertainty

In the main text, we studied a model where the sender has perfect information about the
receiver’s final-period consumption level.

Now suppose the sender’s information is imperfect. In state θ, the receiver will consume
a random amount c in period T + 1, drawn as c ∼ Fθ, deriving from it consumption utility
v(c). As before, v is a strictly increasing consumption-utility function. We interpret the
state θ as the sender’s private information about the receiver’s future consumption, while
the distribution Fθ captures the receiver’s residual consumption uncertainty conditional on
what the sender knows. The case where Fθ is degenerate for every θ ∈ Θ nests the baseline
model.
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Assume that Ec∈F
θ
′ [v(c)] 6= Ec∈F

θ
′′ [v(c)] when θ

′ 6= θ
′′
. We may without loss normalize

minθ∈Θ Ec∈Fθ [v(c)] = 0, maxθ∈Θ Ec∈Fθ [v(c)] = 1.
The mean-based news-utility function N(πt | πt−1) in this environment is the same as

in the environment where the receiver always gets consumption utility Ec∼Fθ [v(c)] in state
θ. This is because given a pair of beliefs Fold, Fnew ∈ ∆(Θ) about the state, the receiver
derives news utility N(Fnew | Fold) based on the difference in expected consumption utilities,
µ(Ec∼Fnew [v(c)] − Ec∼Fold [v(c)]). So, all of the results in the paper concerning mean-based
news utility immediately extend. The two results in the paper that are not specific to mean-
based news utility, Propositions 3 and 4, apply to any functions N(πt | πt−1) satisfying the
continuous differentiability condition stated in Section 2, without requiring any relationship
between N and consumptions in different states.

We now define N using Kőszegi and Rabin (2009)’s percentile-based news-utility model
with a power-function gain-loss utility, in an environment with residual consumption un-
certainty. We apply Proposition 4 to the resulting N and show that one-shot resolution is
strictly sub-optimal. This result applies for any K ≥ 2.

Corollary OA.1. Consider the percentile-based model with µ(x) =

x
α x ≥ 0

−λ(−x)α x < 0
for

0 < α < 1, λ ≥ 1. Suppose there are two states θG, θB ∈ Θ with distributions of consumption
utilities v(FθB) = Unif[0, L], v(FθG) = J + v(FθB) for some L, J > 0. One-shot resolution is
strictly suboptimal for any finite T .

Proof. We show that limε→0
N(1G|(1−ε)1G⊕ε1B)

ε
=∞ under this set of conditions. The argument

behind Proposition 4 then implies some information structure involving perfect revelation of
states other than θG, θB, one-shot bad news, partial good news for the two states θG, θB is
strictly better than one-shot resolution.

For r ∈ [0, 1], write Fr for the distribution of consumption utilities under the belief
r1G ⊕ (1− r)1B.

Note we must have
∫ 1
0 cF1(q)− cF1−ε(q)dq = Jε, and that cF1(q)− cF1−ε(q) ≥ 0 for all q.

Let q∗ = min(ε · J/L, ε). It is the quantile at which cF1−ε(q∗) = J .
For all q ≥ q∗, cF1(q)− cF1−ε(q) ≤ εL.
Case 1: J ≥ L, so q∗ = ε.

∫ q∗

0
cF1(q)− cF1−ε(q)dq =

∫ ε

0
J − q · 1

ε
· ((1− ε)L)dq

= Jε− 1
2ε(1− ε)L.

This implies
∫ 1
q∗ cF1(q)− cF1−ε(q)dq = 1

2ε(1− ε)L.
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The worst case is when the difference is εL on some q-interval, and 0 elsewhere. For small
ε < 0 so that εL < 1,

∫ 1

q∗
(cF1(q)− cF1−ε(q))αdq ≥ (εL)α · (1/2) · ε(1− ε)L

εL

= 1
2(εL)α(1− ε).

Therefore, for small ε > 0, N(1G|(1−ε)1G⊕ε1B)
ε

= 1
2

1
ε1−α

Lα(1− ε), which diverges to∞ as ε→ 0.
Case 2: J < L, so q∗ = εJ/L.

∫ εJ/L

0
cF1(q)− cF1−ε(q)dq =

∫ εJ/L

0
J − q · 1

εJ/L
(J − J

L
ε · L)dq

= 1
2
J2

L
ε+ 1

2
J2

L2 ε
2L

<
1
2Jε+ 1

2Lε
2

using J < L. This then implies
∫ 1
q∗ cF1(q)− cF1−ε(q)dq > 1

2Jε−
1
2Lε

2.

So, again using the worst-case of the difference being εL on some q-interval, and 0 else-
where,

N(1G | (1− ε)1G ⊕ ε1B)
ε

>
1
ε
(εL)α ·

1
2Jε−

1
2Lε

2

εL

= 1
ε1−α

Lα ·
(1

2J/L−
1
2ε
)
.

As ε→ 0, RHS converges to ∞.

OA 3.2.2 A Calibration Comparing Percentile-Based News Utility and Mean-
Based News Utility

Since Proposition 3’s procedure for computing the optimal information structure applies to
general N , including both the percentile-based and the mean-based news-utility functions in
an environment with residual consumption uncertainty, we can compare the solutions to the
sender’s problem for these two models.

Consider two states of the world, Θ = {G,B}. For some σ > 0, suppose consumption
is distributed normally conditional on θ with FG = N (1, σ2), FB = N (0, σ2), consumption
utility is v(x) = x, and gain-loss utility (over consumption) is µ(x) =

√
x for x ≥ 0,

µ(x) = −1.5
√
−x for x < 0. We calculated the optimal information structure for the mean-

based model in an analogous environment, as reported in Figure 2.
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With the percentile-based model, an agent who believes P[θ = G] = π has a belief over
final consumption given by a mixture normal distribution, πFG ⊕ (1 − π)FB, illustrated in
Figure OA.3.

We plot in Figure OA.4 the optimal information structures for T = 5, σ = 1. The optimal
information structures for σ = 0.1, 1, 10 all involve gradual good news, one-shot bad news.
Table OA.1 lists the optimal disclosure of good news over time. Not only are the shapes of
the concavification problems qualitatively similar to those of the mean-based model, but the
resulting optimal information structures also bear striking quantitative similarities.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
percentile-based, σ = 0.1 0.50 0.55 0.61 0.69 0.80 1.00
percentile-based, σ = 1 0.50 0.55 0.62 0.71 0.83 1.00
percentile-based, σ = 10 0.50 0.56 0.63 0.72 0.84 1.00

mean-based, any σ 0.500 0.556 0.626 0.715 0.834 1.000

Table OA.1: Optimal disclosure of good news. The optimal information structure under
a square-root gain-loss function with λ = 1.5 takes the form of gradual good news, one-
shot bad news both in the mean-based model and the percentile-based model for T = 5,
σ = 0.1, 1, 10. The table shows belief movements conditional on the good state in different
periods.

From Table OA.1, it appears that percentile-based and mean-based models deliver more
similar results for larger σ2. We provide an analytic result consistent with the idea that these
two models generate similar amounts of news utility when the state-dependent consumption
utility distributions have large variances.

Proposition OA.3. Suppose Θ = {B,G} and the distributions of consumption utilities in
states B and G are Unif[0, L] and Unif[d, L+ d] respectively, for L, d > 0. Let Nperc(p2 | p1)
be the news utility associated with changing belief in θ = G from p1 to p2 in a percentile-based
news-utility model with a continuous gain-loss utility µ. Then,

lim
L→∞

(
sup

0≤p1,p2≤1
|Nperc(p2 | p1)− µ[(p2 − p1)d]|

)
= 0.

In a uniform environment, if there is enough unresolved consumption risk even conditional
on the state θ, then the difference between percentile-based news utility and mean-based news
utility goes to zero uniformly across all possible belief changes.12

Proof. Let Fp(x) be the distribution function of the mixed distribution p · Unif[d, L + d] ⊕
(1 − p) · Unif[0, L], and F−1

p (q) its quantile function for q ∈ [0, 1]. By a simple calculation,
12Lemma 3 in the Online Appendix of Kőszegi and Rabin (2009) states a similar result, but for a different

order of limits.

20



−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

Densities of consumption utility distributions

consumption utility

de
ns

ity

π = 0.1 
π = 0.9

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of consumption utility distributions

consumption utility

C
D

F

π = 0.1 
π = 0.9

Figure OA.3: The densities and CDFs of final consumption utility distributions under two
beliefs about P[θ = G], π = 0.1 and π = 0.9. The dashed black lines in the CDFs plot
show the differences in consumption utilities at the 25th percentile, 50th percentile, and
75th percentile levels between these two beliefs. The news utility associated with updating
belief from π = 0.1 to π = 0.9 in the percentile-based model is calculated by applying a
gain-loss function µ to all these differences in consumption utilities at various quantiles,
then integrating over all quantiles levels in [0, 1].
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Figure OA.4: The concavifications giving the optimal information structure with horizon

T = 5, gain-loss function µ(x) =


√
x for x ≥ 0
−1.5

√
−x for x < 0

, prior π0 = 0.5, using Kőszegi and

Rabin (2009)’s percentile-based model in a Gaussian environment with σ = 1. The y-axis
in each graph shows the sum of news utility this period and the value function of entering
next period with a certain belief.
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F−1
p (d/L) = d+pd and F−1

p (1−d/L) = L+pd−d. At the same time, for d/L ≤ q ≤ 1−d/L
where q = d/L+ y, we have F−1

p (q) = d+ pd+ yL.
This shows that over the intermediate quantile values between d/L and 1− d/L,

∫ 1−d/L

d/L
µ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq =

∫ 1−d/L

d/L
µ [(p2 − p1)d] dq = (1− 2d/L) · µ[(p2 − p1)d].

For the lower part of the quantile integral [0, d/L], using the fact that F−1
p (d/L) = d + pd,

we have the uniform bound 0 ≤ F−1
p (q) ≤ 2d for all p ∈ [0, 1] and q ≤ d/L. So,

∣∣∣∣∣
∫ d/L

0
µ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq

∣∣∣∣∣ ≤ d

L
· max
x∈[−2d,2d]

|µ(x)|.

By an analogous argument,∣∣∣∣∣
∫ 1

1−d/L
µ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq

∣∣∣∣∣ ≤ d

L
· max
x∈[−2d,2d]

|µ(x)|.

So for any 0 ≤ p1, p2 ≤ 1,

|Nperc(p2 | p1)− µ[(p2 − p1)d]| ≤ 2d
L

max
x∈[d,d]

|µ(x)|+ 2d
L

max
x∈[−2d,2d]

|µ(x)|,

an expression not depending on p1, p2. The max terms are seen to be finite by applying
extreme value theorem to the continuous µ, so the RHS tends to 0 as L→∞.

OA 4 Relation to Other Models

OA 4.1 Optimal Information Structure for Anticipatory Utility

We show that if the receiver has anticipatory utility and gets A (∑ πt(θ) · v(cθ)) when she
ends period t with posterior belief πt ∈ ∆(Θ), then a sender with commitment power has an
optimal information structure that only discloses information in period t = 1.

Consider any information structure (M,σ). Find the period t∗ with the highest ex-ante
anticipatory utility, i.e., t∗ ∈ arg max

1≤t≤T−1
E(M,σ) [A (∑ πt(θ) · v(cθ))]. Consider another informa-

tion structure that generates the (feasible) distribution of beliefs πt∗ in period 1, then reveals
no additional information in periods 2, ..., T−1. This new information structure gives weakly
higher expected anticipatory utility than (M,σ) in every period. Therefore there exists an
optimal information structure that only discloses information in t = 1.
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OA 4.2 Risk Consumption Preferences

Gul, Natenzon, and Pesendorfer (2019) study a model of preference over random evolving
lotteries and propose a class of risk consumption preferences. Translated into our setting,
an agent with risk consumption preference values an information structure (M,σ) according
to utility function

E(M,σ)

[∫
v(u2(πt))dη

]
.

Here u2 : ∆(Θ) → R is affine and v is strictly increasing. The term v(u2(πt)) is viewed as
a function from the time periods {0, 1, ..., T − 1} into the reals and dη denotes the Choquet
integral with respect to a capacity η on {0, 1, ..., T − 1}.

To show that our model of mean-based news utility is not nested under the class of
risk consumption preferences, we show that risk consumption preferences cannot exhibit the
preference patterns from Online Appendix OA 3.1: that is, strictly preferring winning a
lottery for sure to not winning it for sure, but also strictly preferring not winning for sure
to winning with some interior probability p ∈ (0, 1) in the T = 2 setup.

By an abuse of notation, the belief assigning probability q to state G will simply be
denoted q. The first part of the preference gives v(u2(1)) > v(u2(0)), since Choquet integral
of a constant function returns the same constant. When the prior winning probability is
p ∈ (0, 1), the Choquet integrand is either fG : {0, 1} → R with fG(0) = v(u2(p)) and
fG(1) = v(u2(1)), or fB : {0, 1} → R with fB(0) = v(u2(p)) and fB(0) = v(u2(0)). The two
integrands correspond to belief paths where the agent wins or loses the lottery. Since v is
strictly increasing, u2 is affine, and v(u2(1)) > v(u2(0)), we have v(u2(p)) > v(u2(0)). Thus
both fG and fB dominate the constant function v(u2(0)) in every period. By monotonicity
of the Choquet integral, the agent must prefer p probability of winning the lottery to no
chance of winning it.
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