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Abstract

Toward explaining the persistence of biased inferences, we propose a framework to
evaluate competing (mis)specifications in strategic settings. Agents with heterogeneous
(mis)specifications coexist and draw Bayesian inferences about their environment through
repeated play. The relative stability of (mis)specifications depends on their adherents’
equilibrium payoffs. A key mechanism is the learning channel: the endogeneity of
perceived best replies due to inference. We characterize when a rational society is
only vulnerable to invasion by some misspecification through the learning channel,
and highlight new stability phenomena that arise due to the learning channel. As an
application, we show how our framework can be used to endogenize coarse analogy
classes in centipede games.
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1 Introduction

In many economic settings, people draw misspecified inferences about the world: while they
learn from data, they exclude the true data-generating process from consideration. For
instance, past work has documented a number of prevalent statistical biases. Reasoning
about economic fundamentals under the spell of these biases constitutes misspecified learning.
Economists have become increasingly interested in the implications of Bayesian learning
under particular misspecifications, for the most part taking them to be exogenously imposed.

Compared with other errors and mistakes, a distinctive component of misspecified learning
is using data to form beliefs about the world. This raises a natural question: how does the
ability to draw inferences affect the viability of such mistakes? We introduce an evolutionary
approach to answer this question in strategic settings. Specifically, we associate the viability
of a particular (mis)specification with the objective payoffs of the individuals who adopt it.
In contrast to contemporaneous papers that use the same criterion in single-agent decision
problems (Fudenberg and Lanzani, 2022; Frick, Iijima, and Ishii, 2024), our key innovation
is to focus on games, where this objective performance depends on strategic behavior in
equilibrium.

Our main message is that the learning channel — i.e., the ability for agents to learn
and draw (possibly wrong) inferences from data — adds new ways for biased individuals
to develop strategically beneficial commitments. When these biased agents are initially
uncertain about some parameters of their environment, the learning channel endogenously
determines their beliefs and hence their perceived best replies through equilibrium feedback.
By contrast, the learning channel is absent for agents who have a fixed but distorted belief
about all parameters of their environment, since they never use data to update their beliefs.
The learning channel thus generates additional flexibility in equilibrium beliefs, and our
contribution is to emphasize two implications of such flexibility:

1. Due to the greater flexibility, misinference can confer strategic benefits in cases where
dogmatic beliefs do not.

2. Misspecified learners are polymorphic: agents with a fixed bias may be weak in one
environment but become stronger in another due to (endogenous) changes in beliefs.

Our main results fall under one of these two themes. On the former, we find general
conditions under which no dogmatically wrong belief can persist in a rational society, but
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some misspecified agents can nevertheless do strictly better than rational incumbents through
the learning channel. On the latter, polymorphism makes it harder to predict the viability
of a given error across different economic environments. Without the learning channel, we
find some sufficient conditions that let us use the welfare of a given error in one society to
extrapolate that it will not persist in another society. But these conclusions no longer hold
for biased agents who may develop different beliefs in different environments.

Formally, our general framework encodes specifications in models that delineate feasible
beliefs about the stage game. These models serve as the basic unit of cultural transmission.
The model’s adherents think that one of the model parameters describes the true stage
game. They estimate the best-fitting parameter which determines their subjective preference.
Models rise and fall in prominence based on the objective welfare of adherents, as higher
payoffs confer greater evolutionary success.

Society consists of the adherents of multiple competing models who match up to play
the stage game every period. We introduce the concept of a zeitgeist to capture the social
interaction structure — the sizes of the subpopulations with different models and the
matchmaking technology that pairs up opponents to play the game. Agents can identify
which subpopulation their opponent is from, and (correctly) know that the game they play is
orthogonal to the type of opponent.1 Our framework assumes that the agents might face
one of several possible games and therefore richer models can in principle help as they allow
agents to adapt their behavior more. Conditional on the stage game, in equilibrium each
agent forms a Bayesian belief about the game using data from all of her interactions, playing
a subjective best response against every type of opponent given this belief.

We define the evolutionary stability of model A against model B based on whether model
A has a weakly higher average equilibrium payoff than model B when the population share
of model A is close to 1, with the average taken over the different stage games. This criterion
is familiar from past work following what is known as the indirect evolutionary approach.
Under this approach, evolution acts on some trait that determines best responses, as opposed
to actions. We emphasize that our stability concepts reduce to standard notions under this
approach when inference is absent. Rather, our contribution is to apply it to the selection of
models that contain multiple feasible beliefs about the environment.

1If the players think that the stage game can change depending on their opponent, then this would give
additional channels for biases to invade a rational society. Our framework focuses on how the learning channel
that plays a distinctive role in misspecified learning affects the viability of errors.
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The ability to draw inferences within a model (as opposed to committing to a fixed belief)
is necessary for misspecifications to defeat rationality in some contexts. In Section 3.1, we
characterize environments where the correctly specified model is only evolutionarily fragile
against invading models that allow for inferences. Our argument constructs an optimal
misspecified model for invading a rational society. This misspecification resembles an “illusion
of control” bias, where agents think the outcomes they get in a game only depend on their
own strategy and not on the opponent’s strategy. The model has the property that its
adherents end up adopting the optimal commitment against a correctly specified opponent
game-by-game. Misinference thus becomes a channel to tailor commitments to the true game.
The correctly specified model is evolutionarily fragile against this misspecified model with
uniform matching unless the former already gets the Stackelberg payoff in every game.

Our next contribution is to highlight certain stability phenomena that can only emerge
with non-dogmatic misspecified models. We highlight the aforementioned polymorphism
of misspecified models—that they can appear weak against rational incumbents in one
environment and yet grow stronger and successfully invade the rational society in another
environment. The reason is that due to the learning channel, an adherent of a misspecified
model may come to hold different beliefs about parameters of the underlying stage game, and
thus (endogenously) adopt different best-reply functions when facing outcomes generated
from different strategy profiles. Thus, changes in the population structure and matching
process influence the perceived best replies for adherents of misspecified models.

We explore implications of the endogenous interaction between inference and evolutionary
forces that emerges due to polymorphism. First, polymorphism enables a new stability
phenomenon that we call stability reversals. Two models exhibit stability reversal if:

1. Whenever model A is dominant, its adherents strictly outperform model B’s adherents
not only on average, but even conditional on the opponent’s type; and

2. Whenever model B is dominant, its adherents strictly outperform model A’s adherents
on average

In the absence of inference, condition (1) would imply that A outperforms B regardless of the
two subpopulations’ sizes. But this no longer holds when inference is possible. The reason
is that the adherents of model B might make an evolutionarily advantageous inference only
when they are matched up with each other sufficiently often. Thus, even if condition (1) held,
model B might still drive out model A if model B adherents reach some critical mass.
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Polymorphism also manifests in a non-monotonicity of stability with respect to matching
assortativity. As discussed in Alger and Weibull (2013), the assortativity parameter can
represent the degree of homophily in a society or the frequency of interaction with kin.
Various versions of the idea that high assortativity selects for cooperative agents and low
assortativity selects for competitive ones date back to at least Hamilton (1964a,b). But this
simple dichotomous perspective becomes complicated with misspecifications. The reason is
that in our framework, the preferences agents seek to maximize are endogenously determined
in equilibrium, due to the learning channel. Because the adherents of a misspecified model can
draw different misinferences about a fixed game’s parameters when facing data generated by
different opponent actions, one model may be favored over another only at intermediate levels
of assortativities, but not favored at either very low or very high levels. Thus, a particular
bias might only survive in moderately homophilous societies — a novel empirical implication
of misspecified inference.

Our hope is that the extension of the indirect evolutionary approach to accommodate
(misspecified) inferences will enable this framework to speak to richer applications. We pursue
this agenda in our companion paper, He and Libgober (2024), studying the selection of
misspecified higher-order beliefs in a Cournot duopoly game with incomplete information.
We showcase the potential applied value of our equilibrium concept in Section 4 by studying
the selection of analogy classes in extensive form games (Jehiel, 2005), based on the payoffs
for players with different analogy classes. Under analogy-based reasoning, players believe
(incorrectly) that opponents choose the same action distribution within a given grouping of
nodes (i.e., analogy class), inferring this distribution to be the empirical frequency within the
analogy class. Our approach predicts not only that analogy-based reasoning may invade a
correctly-specified society, but also that the two can coexists. Solving for the corresponding
stable population composition, we obtain sharp predictions for the relative prominence of
analogy-based reasoning as a function of the underlying interaction. While we believe these
results highlight the potential practical value of our framework, we admit our current paper
only scratches the surface. We thus hope our framework can guide formal analysis of the
possible advantages of misspecifications in applications beyond those considered so far.
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2 Environment and Stability Concept

We start with our formal stability concept, defining equilibrium zeitgeist to determine the
evolutionary fitness of specifications that coexist in a society. We consider a separate notion,
equilibrium zeitgeist with strategic uncertainty, in Section 4, when we allow agents to draw
inferences about others’ strategies in addition to learning about the fundamentals. Appendix
C provides a combined learning foundation for both equilibrium concepts, but in the main
text we primarily focus on the steady-state characterization. Section 2.6.1 sketches the
framework without inference, which has been studied in past work.

2.1 Objective Primitives

Agents in a population repeatedly match to play a stage game, which is a symmetric two-
player game with a common, metrizable strategy space A. There is a set of possible states of
nature G ∈ G, called situations. The strategy choices ai, a−i ∈ A of i and −i, together with
the situation, stochastically generate consequences yi, y−i ∈ Y from a metrizable space Y.
Each agent i’s consequence yi determines her utility, according to a common utility function
π : Y → R,which we take to be Borel measurable with respect to the sigma algebra generated
by the topology on Y. The objective distribution over consequences is F •(ai, a−i, G) ∈ ∆(Y),
with an associated density or probability mass function denoted by f •(ai, a−i, G), where
f •(ai, a−i, G)(y) ∈ R+ for each y ∈ Y. We suppress G from f • and F • when |G| = 1. Note
that we allow for Y to be completely general outside of the previous technical restrictions.

This setup captures mixed strategies (if A is the set of mixtures over some pure actions),
incomplete-information games (if S is a space of private signals, A a space of actions, and
A = AS is the set of signal-contingent actions), and even asymmetric games. For the latter,
we consider the “symmetrized” version where each player is placed into each role with equal
probability (see Section 4 for one application where agents play an asymmetric game).

2.2 Models and Parameters

Throughout this paper, we will take the strategy space A, the set of consequences Y, and the
utility function over consequences π to be common knowledge among the agents. But, agents
are unsure about how play in the stage game translates into consequences: that is, they have
fundamental uncertainty about the function (ai, a−i) 7→ F •(ai, a−i, G). While we assume that
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the situation G is unobserved, we allow agents to draw inferences about it by observing the
consequences from the matches they face.

We focus on the case where society consists of two2 observably distinguishable groups
of agents, A and B, who may behave differently in the stage game due to different beliefs
about how y is generated. The two groups of agents entertain different models of the world
that help resolve their fundamental uncertainty. A model Θ is a collection of data-generating
processes F : A2 → ∆(Y) about how strategy profiles translate into consequences for the
agent, with the processes parameterized by some γ ∈ Γ. We thus view each model as a
subset of (∆(Y))A2 , sometimes writing Fγ for the process given by the parameter γ. For every
(ai, a−i) ∈ A2 and every process F ∈ Θ, F (ai, a−i) is a Borel measure on Y; we assume it has
associated with it a density or probability mass function f(ai, a−i) : Y → R+. We assume
the parameter space Γ of each model is metrizable, and that for every fixed (ai, a−i) the map
γ 7→ Ey∼Fγ(ai,a−i)[π(y)] is Borel measurable.3

Each agent enters society with a persistent model, which depends entirely on whether she
is from group A or group B. We refer to the agents who are endowed with a given model
as the adherents of that model. We call Θ = {F •(·, ·, G) : G ∈ G} the minimal correctly
specified model. A model may exclude the true F •(·, ·, G) that produces consequences, at
least in some situation G. In this case, the model is misspecified.

One possibility our framework accommodates is that |Θ| = 1, in which case the model
is a singleton. Singleton models are of special interest in our setting because they reflect
agents who hold dogmatic beliefs and hence do not draw inferences from data or adapt their
preferences differently across different situation. Since the situation is itself unobserved,
preferences can only vary by drawing inferences after observing consequences.

2.3 Zeitgeists

To study competition between two models, we must describe the social composition and
interaction structure in the society where learning takes place. We have in mind a setting
where each agent plays the stage game with a random opponent in every period and uses her

2We view the case of two groups of agents with different models as the natural starting point, though it is
straightforward to generalize Definition 1 to the case of more than two groups.

3Note that this measurability property would follow from the measurability of the mapping γ 7→
fγ(ai, a−i)(y) for each fixed (ai, a−i, y), under some further restrictions necessary to apply Fubini’s the-
orem to the function (ai, a−i, y) 7→ π(y)f(a−i, a−i)(y)
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personal experience in these matches to calibrate the most accurate parameter within her
model. A zeitgeist describes the corresponding landscape.

Definition 1. Fix models ΘA and ΘB. A zeitgeist Z = (µA(G), µB(G), p, λ, a(G))G∈G

consists of: (1) for each situation G, a belief over parameters for each model, µA(G) ∈ ∆(ΘA)
and µB(G) ∈ ∆(ΘB); (2) relative sizes of the two groups in the society, p = (pA, pB)
with pA, pB ≥ 0, pA + pB = 1; (3) a matching assortativity parameter λ ∈ [0, 1]; (4)
for each situation G, each group’s strategy when matched against each other group, a =
(aAA(G), aAB(G), aBA(G), aBB(G)) where ag,g′ (G) ∈ A is the strategy that an adherent of Θg

plays against an adherent of Θg′ in situation G.

A zeitgeist outlines the beliefs and interactions among agents with heterogeneous models
living in the same society. Part (1) captures the beliefs of each group. Parts (2) and (3)
determine social composition and social interaction—the relative prominence of each model
and the probability of interacting with one’s own group versus with the overall population.
In each period, λ is the probability an agent’s opponent is from her own group, and 1 − λ is
the probability the opponent is drawn uniformly from the population. Therefore, an agent
from group g has probability λ + (1 − λ)pg of being matched with an opponent from her
own group, and a complementary chance of being matched with an opponent from the other
group. Part (4) describes behavior in the society. Note that a zeitgeist describes each group’s
situation-contingent belief and behavior, since agents may infer different parameters and thus
adopt different subjective best replies in different situations. However, it is worth emphasizing
that since the situation is not observed directly, situations influence strategies by changing
the distribution over consequences (and hence the inferences made).

2.4 Equilibrium Zeitgeists

A model’s fitness corresponds to the equilibrium payoffs of its adherents. An equilibrium
zeitgeist (EZ) imposes optimality conditions on inference and behavior in a zeitgeist. Op-
timality of behavior requires each player to best respond given her beliefs, and optimality
of inference requires that the support of each player’s belief only contains the “best-fitting”
parameter from her model in the sense of minimizing Kullback-Leibler (KL) divergence, using
the observed distribution of consequences.

We now formalize this criterion. For two distributions over consequences, Φ,Ψ ∈ ∆(Y)
with density or probability mass functions ψ, ϕ, define the KL divergence from Ψ to Φ
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as DKL(Φ ∥ Ψ) :=
∫
ϕ(y) ln

(
ϕ(y)
ψ(y)

)
dy. Recall that every data-generating process F , like

the true fundamental F •(·, ·, G), outputs a distribution over consequences for every pro-
file of own play and opponent’s play, (ai, a−i) ∈ A2. For data-generating process F, let
K(F ; ai, a−i, G) := DKL(F •(ai, a−i, G) ∥ F (ai, a−i)) be the KL divergence from the expected
distribution F (ai, a−i) to the objective distribution F •(ai, a−i, G) under the play (ai, a−i) and
situation G. For a Borel measure µ over parameters, let Ui(ai, a−i;µ) represent i’s subjective
expected utility under the belief that the true parameter is drawn according to µ. That is,
Ui(ai, a−i;µ) := EF∼µ(Ey∼F (ai,a−i)[π(y)]).

Definition 2. A zeitgeist Z = (µA(G), µB(G), p, λ, a(G))G∈G is an equilibrium zeitgeist (EZ)
if, for every G ∈ G and g, g

′ ∈ {A,B}, ag,g′ (G) ∈ arg max
ai∈A

Ui(ai, ag′ ,g(G);µg(G)) and, for

every g ∈ {A,B}, belief µg(G) is supported on

arg min
F∈Θg

{(λ+ (1 − λ)pg) ·K(F ; ag,g(G), ag,g(G), G) + (1 − λ)(1 − pg) ·K(F ; ag,−g(G), a−g,g(G), G)}

where −g means the group other than g.

This definition requires agents from group g to choose a subjective best response against
their opponents, given the belief µg about the fundamental uncertainty. No matter which
group the agent is matched against, these choices are always made to selfishly maximize her
(individual) subjective utility function. Each agent’s belief µg is supported on the parameters
in her model that minimize a weighted KL-divergence objective in situation G, with the data
from each type of match weighted by the probability of confronting this type of opponent. The
use of KL-divergence minimization as the inference procedure is standard in the misspecified
Bayesian learning literature, as in Esponda and Pouzo (2016). We note that here we assume
inference occurs separately across situations. This reflects situation persistence, with agents
having enough data to establish new beliefs and behavior if the situation were to change.
Our learning foundation in Appendix C justifies this situation-by-situation updating, but we
omit the details here as it otherwise plays no role in our results.

2.5 Evolutionary Stability of Models

Given a distribution q ∈ ∆(G) and an EZ, we define the fitness of each model as the expected
objective payoff of its adherents in the EZ when G is drawn according to q. We have in mind
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an evolutionary story where the relative success of the two models depends on their relative
fitness: for instance, agents may play a large number of games in different periods possibly
facing different situations over time, and models of those agents with higher total objective
payoffs are more likely to be adopted in the next generation.4 Given this notion of fitness,
our question of interest is: Can the adherents of a resident model ΘA, starting at a position
of social prominence, always repel an invasion from a small ϵ mass of agents who adhere to a
mutant model ΘB?

Evolutionary stability depends on the fitness of models ΘA,ΘB in EZs with pA = 1−ϵ, pB =
ϵ for small ϵ > 0.

Definition 3. Say ΘA is evolutionarily stable [fragile] against ΘB under λ-matching if there
exists some ϵ̄ > 0 so that for every 0 < ϵ ≤ ϵ̄, there is at least one EZ with models ΘA,ΘB,
p = (1 − ϵ, ϵ), matching assortativity λ and, in all such EZs, ΘA has a weakly higher [strictly
lower] fitness than ΘB.

Evolutionary stability is when ΘA has higher fitness than ΘB in all EZs, and evolutionary
fragility is when ΘA has lower fitness in all EZs.5 These two cases give sharp predictions about
whether a small share of mutant-model invaders might grow in size, across all equilibrium
selections. We fix these rather stringent definitions of stability and fragility, and focus on
showing in Section 3 how the presence of the learning channel can generate new stability /
fragility phenomena. A third possible case, where ΘA has lower fitness than ΘB in some but
not all EZs, corresponds to a situation where the mutant model may or may not grow in the
society, depending on the equilibrium selection.

2.6 Discussion

Before using this framework to illustrate our main contributions—on tailored commitments
and polymorphism, mentioned in the introduction—we clarify some important aspects of it.

4One subtlety is that fitness maximization may require not maximizing expected payoffs, but rather
some other function of the distribution of payoffs, if shocks can be correlated (Robson, 1996). However, our
microfoundation in Appendix C posits that situations are fixed for long stretches of time, with no correlated
shocks across matches, making the expectation an appropriate measurement of fitness.

5If the set of EZs is empty, then ΘA is neither evolutionarily stable nor evolutionarily fragile against ΘB .
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2.6.1 Comparison to Other Evolutionary Frameworks

We apply the “indirect evolutionary approach” (see Robson and Samuelson (2011)) to settings
where agents can draw inferences (especially misspecified inferences). When |Θ| = 1 and
|G| = 1, our framework reduces to the setup studied by the literature on preference evolution
(Alger and Weibull, 2019), since singleton models are equivalent to subjective preferences.
But in general, models with multiple parameters allow agents to adapt their beliefs (which
determine their subjective preferences) endogenously.

Allowing for multiple situations is the most direct way for inference to be beneficial. With
only a single situation, any steady state outcome that emerges for some Θ can also emerge
when |Θ| = 1. That said, one could also study settings with multiple situations without
inference (see Güth and Napel (2006) for an example of such an exercise).

2.6.2 Framework Assumptions

An important assumption is that agents (correctly) believe the economic fundamentals
(represented by G) do not vary depending on which group they are matched against. That is,
the mapping (ai, a−i) 7→ ∆(Y) describes the stage game that they are playing, and agents
know that they always play the same stage game even though opponents from different
groups may use different strategies in the game. As a result, the agent’s experiences in games
against both groups of opponents jointly resolve the same fundamental uncertainty about
the environment.6 If adherents were able to believe the fundamentals changed depending on
their opponent, then this would give a trivial way for in-group preferences to emerge and
also trivialize the question of which errors could invade. For expositional simplicity, we do
not consider this elaboration.

We comment on some other modeling assumptions. First, our framework assumes that
agents can identify which group their matched opponent belongs to, though we do not assume
that agents know the data-generating processes contained in other models or that they are
capable of making inferences using other models. Observability assumptions are common
in the literature on the indirect evolutionary approach; see Alger and Weibull (2019) and
Dekel et al. (2007) for discussions. While full observability can be relaxed in several ways,

6We note that play between two groups g and g
′ is not a Berk-Nash equilibrium (Esponda and Pouzo,

2016), since adherents from one group draw inferences about the game’s parameters from the matches against
the other group, which may adopt a different strategy. A Berk-Nash equilibrium between groups g and g′

would require inferences to only be made from data generated in the match between g and g′.
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we expect the main insights to carry through given sufficient observability. In our context,
one key assumption that makes our approach tractable is that players do not change their
inferences in response to seeing their opponents’ actions. In other words, players do not “read
into” what others do when learning. This particular assumption seems plausible in many
cases. Consider hedge funds that regularly trade against each other in a variety of settings.
Funds hold differing philosophies, with some focusing on fundamental analysis and others on
technical analysis.7 But, simply observing another fund’s actions would not lead a technical
analyst to embrace efficient markets, or vice versa. Both fundamental analysis and technical
analysis are complex forecasting systems that involve calibrating sophisticated models and
take many years of training and experience to master. In settings such as these, agents need
not know how others’ models work even after identifying who they are.

Second, EZs as presented abstract away from the issues surrounding learning others’
strategies. However, we study an extension in Section 4 allowing agents to be misspecified
about others’ strategies and hold wrong beliefs about these strategies in equilibrium.

Lastly, even as agents adjust their beliefs and behavior to achieve optimality, population
proportions pA and pB remain fixed. We imagine a world where the relative prominence of
models changes much more slowly than the rate of convergence to an EZ. This assumption
about the relative rate of change in the population sizes follows the previous work on
evolutionary game theory (See Sandholm (2001) or Dekel, Ely, and Yilankaya (2007)).

3 Stability Implications of the Learning Channel

We now illustrate some stability phenomena that distinguish misspecified learning from
dogmatic beliefs in our framework. These phenomena underscore our two main contributions
mentioned in the introduction. The main novelty of our framework relative to past work on the
indirect evolutionary approach is that agents maximize endogenously determined subjective
preferences, not exogenously fixed ones. The learning channel refers to this endogenous
preference formation, and we showcase some of its unique implications in this section, toward
making the aforementioned contributions.

The learning channel adds new ways for biased individuals to develop strategic commit-
ments in games. First, unlike agents with fixed subjective preferences, misspecified learners

7In practice, each fund’s model about the financial market is well known to other market participants, as
it is always prominently marketed to their clients.
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can develop situation-specific commitments that are better tailored to the stage game. We
show this mechanism expands the scope of invading rational societies. Second, misspecified
learners can exhibit polymorphism as they form different beliefs in different environments.
This leads to new stability phenomena and adds nuance to extrapolations of the welfare
implications of a misspecified model across different societies, relative to that of a distorted
subjective preference.

3.1 When Is Learning Necessary to Defeat Rationality?

Our first result characterizes when misspecified models can only invade a rational society
when inference is possible. More precisely, when does there exist a distribution over situations
such that the correctly specified model is not evolutionarily fragile against any singleton
model, but it is evolutionarily fragile against some models with multiple parameters? The
following example illustrates:

Example 1. Suppose there are two situations, GA and GB, which are equally likely, and
consequences Y = {g, b}, with u(g) = 1 and u(b) = 0. Suppose that the probability a given
player obtains g given an action profile and situation is determined by the table below.

GA a1 a2 a3

a1 0.1, 0.1 0.1, 0.1 0.1, 0.11
a2 0.1, 0.1 0.3, 0.3 0.1, 0.1
a3 0.11, 0.1 0.1, 0.1 0.2, 0.2

GB a1 a2 a3

a1 0.11, 0.11 0.5, 0.5 0.12, 0.4
a2 0.5, 0.5 0.12, 0.12 0.14, 0.55
a3 0.4, 0.12 0.55, 0.14 0.4, 0.4

Taking λ = 0, we show the correctly specified model is not evolutionarily fragile against any
singleton mutant model Θ = {F}. Consider the case where the resident correctly specified
model has a population size of 1. It will obtain an objective fitness 0.35 if (a2, a2) in situation
GA and (a3, a3) in situation GB are played, as these are Nash equilibria. But under the
singleton model {F}, one of the three must hold:

• If a3 is a best response to a3 under F , there is an EZ where (a3, a3) is always the
outcome, and the expected fitness is 0.3 < 0.35

• If a2 is a best response to a3 under F , there is an EZ where (a2, a3) is played by the
mutant and resident in GB, so the mutant’s payoff is at most 1

2 · 0.3 + 1
2 · 0.14 < 0.35
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• If a1 is a best response to a3 under F , then there is an EZ where (a1, a3) is played by
the mutant and resident in GA, so the mutant’s payoff is at most 1

2 · 0.1 + 1
2 · 0.55 < 0.35.

Thus, for all ϵ > 0 sufficiently small, there is an EZ where the resident model does strictly
better, and so the minimal correctly specified model is not evolutionarily fragile against any
singleton. However, consider the misspecified model Θ = {FA, FB}, where both FA and FB

depend only on one’s own strategies and not the opponent’s. Under FA, a1, a2, and a3 lead
to consequence g with probabilities 0.1, 0.3, and 0.2 respectively. Under FB, playing a1, a2,
and a3 lead to consequence g with probabilities 0.5, 0.14, and 0.4 respectively.

The resident minimal correctly specified model is evolutionarily fragile against this
misspecified model. Note that the mutants never choose a3, since this is dominated under
both FA and FB. Next, note that mutants would play a2 when believing FA and a1 when
believing FB. We show these mutants play a2 in GA and a1 in GB against the resident in
every EZ when the population share of the mutants is sufficiently small. Indeed, if mutants
were to play a1 in situation GA, the correctly specified residents would best respond with a3

in GA. The mutants then learn FA in GA, and would then deviate to a2. If mutants play a2

in situation GB, once again the residents best respond with a3 in GB, and the mutants learn
FB. But under FB, the mutants believe they should deviate to a1. These arguments rule out
all other EZ behavior, so the mutants must play a2 in GA and a1 in GB. In this EZ, mutant
fitness is (1/2) · 0.3 + (1/2) · 0.5 = 0.4 > 0.35, higher than the resident’s fitness.

The previous example has two notable features: (1) A misspecification resembling an
“illusion of control” bias whereby individuals believe consequences only depend on their
own actions, not their opponent’s actions; (2) inferences that lead misspecified agents to
misperceive the Stackelberg action in each situation as the strictly dominant action. Models
of this form allow us to determine when the ability to draw misinferences strictly expands
the scope for invasion against rationality. Intuitively, if mutants can adopt the optimal
commitment situation-by-situation, then the learning channel allows the mutants to tailor
their commitment. But a mutant with only one model (i.e., an exogenous subjective preference)
lacks the flexibility to play differently in different situations.

Some notation is needed to state the general result. Consider an arbitrary situation G.
We let vNE

G ∈ R be the highest symmetric Nash equilibrium payoff in G, when agents choose
strategies from A. For each ai ∈ A, we let BR(ai, G) be a rational best response against the
strategy ai in situation G, breaking ties against the user of ai. Let v̄G ∈ R be the Stackelberg
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equilibrium payoff in situation G, breaking ties against the Stackelberg leader, i.e.,

v̄G := max
ai

Ui(ai,BR(ai, G), F •(G)). (1)

Call the strategy āG that maximizes Equation (1) the Stackelberg strategy in situation G.
We assume the Stackelberg strategy is unique in each situation, and furthermore that there
is a unique rational best response to āG in each situation G′, where possibly G ̸= G′. Finally,
let vbG denote the worst equilibrium payoff of an agent with the subjective best-response
correspondence b when she plays against a rational opponent in situation G.8

We impose two identifiability conditions:

Definition 4. Situation identifiability is satisfied if for every ai, a−i ∈ A and G ̸= G′,

we have F •(ai, a−i, G) ̸= F •(ai, a−i, G
′). Stackelberg identifiability is satisfied if whenever

G ̸= G′ and a−i, a′
−i are rational best responses to āG in situations G and G′, we have

F •(āG, a−i, G) ̸= F •(āG, a′
−i, G

′).

Under situation identifiability, a minimal correctly specified agent can identify the true
situation. Under Stackelberg identifiability, playing āG in situation G leads to different
consequences than playing the same strategy in situation G′ ̸= G, provided the opponent
chooses the rational best response to the strategy.

The following result presents our characterization of when the learning channel is required
for misspecified models to outperform rationality, for some distribution over situations:

Theorem 1. Suppose λ = 0, there are finitely many situations, and there is a symmetric
Nash equilibrium in A × A for every situation G.

1. If there is no point (uG)G∈G in the convex hull of {(vbG)G∈G | b : A ⇒ A} with the
property that uG ≥ vNE

G for every G ∈ G, then there exists a full-support distribution
q ∈ ∆(G) so that the correctly specified model is not evolutionarily fragile against any
singleton model.

2. If vNE
G < v̄G for some G, situation identifiability and Stackelberg identifiability hold, and

there are finitely many strategies, then there exists a model Θ̂ such that the correctly
8More formally, given correspondence b : A ⇒ A, let vb

G ∈ R be defined as i’s lowest payoff across all
strategy profiles (ai, a−i) such that ai ∈ b(a−i) and a−i is a rational response to ai in situation G. If no such
profile exists, let vb

G = −∞.
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specified model is evolutionarily fragile against Θ̂ under any full-support distribution
q ∈ ∆(G).

Whenever both conditions in Theorem 1 are satisfied, there is some distribution over
situations so that the minimal correctly specified model is evolutionarily fragile against some
mutant model, but not evolutionarily fragile against any singleton mutant model. In these
environments, the ability to adapt preferences endogenously to the relevant situation (i.e.,
the learning channel) is a necessary condition for an invading mutant to displace the rational
incumbent. The proof of Theorem 1 also illustrates the kind of misspecification that can
outperform rationality—specifically, those which yield optimal Stackelberg commitments
situation-by-situation.

One environment where vNE
G = v̄G for every situation G is when the agents face decision

problems — that is, a player’s payoff in every situation G is independent of the action of the
matched opponent. When all situations are decision problems, Theorem 1 does not apply:
in fact, the correctly specified model is not evolutionarily fragile against any other model,
regardless of whether such invaders learn from data. But in general, when the situations G are
games that feature strategic interactions between players, Theorem 1 characterizes when the
possibility highlighted by Example 1 arises; and indeed, one can check that Example 1 satisfies
both conditions of Theorem 1. Hence, this result shows that mutants with misspecified
models cannot in general be represented simply as mutants with fixed subjective best-response
correspondences.

3.2 Stability Reversals

We now illustrate polymorphism and highlight one consequence of it: the potential for a
greater indeterminacy in the emergence of stable biases. For expositional simplicity, we
assume that |G| = 1 throughout this section. We will refer to a model’s conditional fitness
against group g, i.e., the expected payoff of the model’s adherents in matches against group g.

Definition 5. Two models ΘA,ΘB exhibit stability reversal if (i) in every EZ with λ = 0 and
(pA, pB) = (1, 0), ΘA has strictly higher conditional fitness than ΘB against group A opponents
and against group B opponents, but also (ii) in every EZ with λ = 0 and (pA, pB) = (0, 1),
ΘB has strictly higher fitness than ΘA.

When pB = 0, how ΘA performs against ΘB does not actually affect group A’s fitness.
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Condition (i) encodes the strong requirement that ΘA outperforms ΘB even on the zero-
probability event of being matched against a ΘB opponent. A stability reversal occurs if
this stronger requirement holds (when ΘA dominates in society), and yet ΘB still strictly
outperforms ΘA if ΘB starts from a position of prominence.

We begin with two general results on when stability reversals cannot emerge. First, it
cannot emerge without the learning channel:

Proposition 1. Suppose |G| = 1. Two singleton models (i.e., two subjective preferences in
the stage game) cannot exhibit stability reversal.

Additionally, stability reversals cannot emerge in decision problems. We show this by
introducing a class of games where strategic interactions do not matter:

Definition 6. A model Θ is strategically independent if for all µ ∈ ∆(Θ), arg max
ai∈A

Ui(ai, a−i;µ)

is the same for every a−i ∈ A.

The adherents of a strategically independent model believe that while an opponent’s action
may affect their utility, it does not affect their best response.

Proposition 2. Suppose |G| = 1, suppose ΘA,ΘB exhibit stability reversal and ΘA is the
correctly specified singleton model. Then, the beliefs that the adherents of ΘB hold in all EZs
with p = (1, 0) and the beliefs they hold in all EZs with p = (0, 1) form disjoint sets. Also,
ΘB is not strategically independent.

The first claim of Proposition 2 underscores that stability reversal requires inference—it cannot
happen if group B agents merely have a different subjective preference. The second claim
shows that stability reversal can only happen if the misspecified agents respond differently to
different rival play, immediately implying they cannot emerge in decision problems.

We now show by example that stability reversal can emerge with models that allow for
inference. Consider a two-player investment game where player i chooses an investment level
ai ∈ {1, 2}. A random productivity level P is realized according to b•(ai + a−i) + ϵ where ϵ is
a zero-mean noise term, b• > 0. Player i’s payoffs are ai · P − 1{ai=2} · c. Consequences are
y = (ai, a−i, P ). We record the payoff matrix of this investment game:

1 2
1 2b•, 2b• 3b•, 6b• − c

2 6b• − c, 3b• 8b• − c, 8b• − c
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Condition 1. 5b• < c < 6b•.

In words, we assume that ai = 1 is a strictly dominant strategy in the stage game,
but the investment profile (2,2) Pareto dominates the investment profile (1,1) (so that the
corresponding game is a Prisoner’s Dilemma). Consider two models in the society. Take ΘA

to be a correctly specified singleton (thus knowing the true mapping from actions to payoffs),
while ΘB wrongly stipulates P = b(ai + a−i) −m+ ϵ, where m > 0 is fixed, while b ∈ R is a
parameter that the adherents infer. We impose a condition on ΘB, which holds whenever
m > 0 is large enough:

Condition 2. c < 4b• + 1
3m and c < 5b• + 1

4m.

We show that in this example models ΘA and ΘB exhibit stability reversal.

Example 2. In the investment game, under Condition 1 and Condition 2, ΘA and ΘB exhibit
stability reversal.

The idea is that the adherents of ΘB are polymorphic. They overestimate the complemen-
tarity of investments, and this overestimation is more severe when they face data generated
from lower investment profiles. As a result, the match between ΘA and ΘB plays out differ-
ently depending on which model is resident: it results in the investment profile (1, 2) when
ΘA is resident, but results in (1, 1) when ΘB is resident. (We relegate the formal argument to
Appendix A.5.) Due to Propositions 1 and 2, we conclude that this example is possible due
to the non-trivial strategic interactions and ΘB’s inference about b (polymorphism through
the learning channel).

Stability reversals provide a clear demonstration of polymorphism in models that permit
inference. A mutant model may appear weak when present in small proportions, doing worse
than the incumbent model conditional on every type of opponent. Yet, if the population
share of the mutant model reaches a critical mass, its adherents infer a more evolutionarily
advantageous model parameter based on their within-group interactions, change their best-
response correspondence, and hence outperform the adherents of the incumbent model.

3.3 Non-Monotonic Stability in Matching Assortativity

Our last general result is also a consequence of the polymorphism of misspecified learners: a
mutant model might successfully invade only when matching assortativity in the society is
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intermediate. This non-monotonicity arises because a misspecified agent can draw different
inferences about the game’s fundamentals depending on the relative frequency of in-group and
out-group interactions, as these two groups of opponents choose different actions. The idea
that social interaction structure shapes people’s beliefs about the world has empirical support,9

and our framework shows how this mechanism affects the stability of misspecifications.
We again assume there is only one situation, for simplicity. Note that without inference

(i.e., in the setting of preference evolution), the fitness of a group is linear in matching
assortativity. Thus, for singleton models, ΘA being evolutionarily stable against ΘB both
when λ = 0 and when λ = 1 implies the same holds for all λ ∈ (0, 1).

Proposition 3. Suppose ΘA,ΘB are singleton models (i.e., subjective preferences in the
stage game) and ΘA is evolutionarily stable against ΘB with λ-matching for both λ = 0 and
λ = 1. Then, ΘA is also evolutionarily stable against ΘB with λ-matching for any λ ∈ [0, 1].

Crucially, inference leads to cases where the relevant “preference” changes depending on
how frequently a model interacts with different types of opponents. This kind of polymorphism
means a model’s fitness may be non-linear in the matching probabilities. This phenomenon
is a distinguishing feature of our framework and we show that the conclusion of Proposition
3 need not hold for models that allow for parameter inferences.

Consider a stage game where each player chooses an action from {a1, a2, a3}. Every player
then receives a random prize, y ∈ {g, b}, with utility values π(g) = 1 and π(b) = 0. The
payoff matrix below displays the objective expected utilities associated with different action
profiles, which also correspond to the probabilities that the row and column players receive
the good prize g.

a1 a2 a3

a1 0.25, 0.25 0.50, 0.20 0.70, 0.15
a2 0.20, 0.50 0.40, 0.40 0.40, 0.20
a3 0.15, 0.70 0.20, 0.40 0.20, 0.20

Let ΘA be the correctly specified singleton model. The action a1 is strictly dominant
under the objective payoffs, so an adherent of ΘA always plays a1 in all matches. Let ΘB

9For example, Bazzi et al. (2019) document how ethnic attachment in response to a resettlement policy in
Indonesia has varying effects depending on whether a community is “fractionalized” (so that most interactions
are not with one’s own group members, i.e., λ is small) versus polarized (so that most interactions are with
one’s own group, i.e., λ is large).
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be a misspecified model ΘB = {FH , FL}. Each model FH , FL stipulates that the prize g is
generated according to the probabilities in the following table, where b and c are parameters
that depend on the model. The model FH has (b, c) = (0.8, 0.2) and FL has (b, c) = (0.1, 0.4).

a1 a2 a3

a1 0.10, 0.10 0.10, c 0.10, 0.15
a2 c, 0.10 b, b b, 0.20
a3 0.15, 0.10 0.20, b 0.20, 0.20

The learning channel for the biased mutants leads the correctly specified model to have
non-monotonic evolutionary stability in terms of matching assortativity.

Example 3. In this stage game, ΘA is evolutionarily stable against ΘB under λ-matching
when λ = 0 and λ = 1, but it is also evolutionarily fragile under λ-matching when λ ∈ (λl, λh),
where 0 < λl < λh < 1 are λl = 0.25, λh ≈ 0.56.

Consider the match between two adherents of ΘB. If they believe in FH , they will play
the action profile (a2, a2) and payoff profile (0.4, 0.4), a Pareto improvement compared to the
correctly specified outcome (a1, a1). The problem is that the data from play of (a2, a2) fit
FL better than FH , since the objective 40% probability of getting prize g is closer to FL’s
conjecture (10%) than FH ’s conjecture (80%). A belief in FH — and hence the profile (a2, a2)

— cannot be sustained if the mutants only play each other. On the other hand, when an
adherent of ΘB plays a correctly specified ΘA adherent, both FH and FL prescribe a best
response of a2 against the ΘA adherent’s play a1. The data generated from the (a2, a1) profile
lead biased agents to the parameter FH that enables cooperative behavior within the mutant
community. But, these matches against correctly specified opponents harm the mutant’s
welfare, as they only get an objective payoff of 0.2.

Therefore, the most advantageous interaction structure for the mutants is one where
they can infer FH using the data from matches against correctly specified opponents, then
extrapolate this optimistic belief about b to coordinate on (a2, a2) in matches against fellow
mutants. This requires the mutants to match with intermediate assortativity. Figure 1
depicts the equilibrium fitness of the mutant model ΘB as a function of assortativity in
a society where the mutant model’s population share is close to zero. While payoffs of
ΘB adherents increase in λ at first, eventually they drop when mutant-vs-mutant matches
become sufficiently frequent that a belief in FH can no longer be sustained. Note that a
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Figure 1: The EZ fitness of ΘB for different values of λ when pB = 0. (The EZ fitness of
the resident model ΘA is always 0.25.) In the blue region, adherents of ΘB infer FH and
receive linearly increasing average payoffs across all matches as λ increases. In the red region,
adherents of ΘB infer FL and receive a payoff of 0.2 in all matches, regardless of λ.

similar conclusion holds with fixed λ and varying population sizes: what ultimately matters
is the probability with which ΘB interacts with each model. Non-linearity of fitness in the
population shares can emerge here as well, also a unique possibility due to inference.10

4 Evolutionary Stability of Analogy Classes

We now turn to an illustration of the practical value of our approach. Specifically, we apply
the stability notions introduced in this paper to study coarse thinking in games. Jehiel (2005)
introduced analogy-based expectation equilibrium (ABEE) in extensive-form games, where
agents group opponents’ nodes into analogy classes and only keep track of aggregate statistics
of opponents’ average behavior within each analogy class. An ABEE is a strategy profile
where agents best respond to the belief that at all nodes in every analogy class, opponents
behave according to the average behavior in the analogy class. The ensuing literature typically
treats analogy classes as exogenously given, interpreted as arising from coarse feedback or
agents’ cognitive limitations.11 We showcase the practical value of our approach by using the
framework from Section 2 to endogenize analogy classes based on their objective expected

10See Appendix 4.2 for a discussion of stability with intermediate population shares.
11Section 6.2 of Jehiel (2005) mentions that if players could choose their own analogy classes, then the finest

analogy classes need not arise, but also says “it is beyond the scope of this paper to analyze the implications
of this approach.” In a different class of games, Jehiel (1995) similarly observes that another form of bounded
rationality (having a limited forecast horizon about opponent’s play) can improve welfare.
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payoffs in equilibrium.12

4.1 Relaxing the Observability of Strategies

To study analogy-based reasoning, we relax the assumption that people correctly know others’
strategies in equilibrium. We introduce the concepts of extended parameters and extended
models:

Definition 7. An extended parameter is a triplet (aA, aB, F ) with aA, aB ∈ A and F :
A2 → ∆(Y). An extended model Θ is a collection of extended parameters: i.e., a subset of
A2 × (∆(Y))A2 .

In addition to a conjecture F about how strategy profiles translate into consequences
for the agent, extended models also contain conjectures about how group A and group
B opponents will act. We assume the marginal of the extended model on (∆(Y))A2 is
metrizable. As before, we also assume each F is given by a density or probability mass
function f(ai, a−i) : Y → R+ for every (ai, a−i) ∈ A2. We say that an extended model Θ is
correctly specified if Θ = A2 × {F •(·, ·, G)}, so the agent can make unrestricted inferences
about others’ play and does not rule out the correct data-generating process F •(·, ·, G) for
any situation G.

Defining zeitgeists for extended models is immediate, as we can simply replace “model”
with “extended model” in Definition 1. The equilibrium notion, however, is subtly different:

Definition 8. A zeitgeist with strategic uncertainty Z = (ΘA,ΘB, µA(G), µB(G), p, λ, a(G))G∈G

is an equilibrium zeitgeist with strategic uncertainty (EZ-SU) if for every G ∈ G and g, g
′ ∈

{A,B}, ag,g′ (G) ∈ arg max
â∈A

E(aA,aB ,F )∼µg(G)

[
Ey∼F (â,a

g
′ )(π(y))

]
and, for every g ∈ {A,B}, the

belief µg(G) is supported on

arg min
(âA,âB ,F̂ )∈Θg

 (λ+ (1 − λ)pg) ·DKL(F •(ag,g(G), ag,g(G), G) ∥ F̂ (ag,g(G), âg)))
+(1 − λ)(1 − pg) ·DKL(F •(ag,−g(G), a−g,g(G), G) ∥ F̂ (ag,−g(G), â−g)


where −g means the group other than g.

12Other approaches to endogenizing analogy classes are pursued in Jehiel and Mohlin (2023); Jehiel and
Weber (2023).
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The difference compared to Definition 2 is that the KL divergence is now taken with respect
to the conjectured opponent’s strategy, part of the extended model. Conjectures now include
others’ play, in addition to stage game parameters.

4.2 Defining Stable Population Shares

In this section, we will also be interested in stable population shares in a society that contains
positive fractions of both rational and misspecified players. We briefly introduce the following
solution concept.

Definition 9. Call population share (p, 1 − p) with p ∈ (0, 1) a stable population share if
there is an EZ (or EZ-SU) with (p, 1 − p) where both models have the same fitness, and there
exists ϵ̄ such that:

1. For any 0 < ϵ < ϵ̄, there is an EZ (or EZ-SU) with population share (p+ ϵ, 1 − p− ϵ)
where ΘA has strictly lower fitness than ΘB

2. For any 0 < ϵ < ϵ̄, there is an EZ (or EZ-SU) with population share (p− ϵ, 1 − p+ ϵ)
where ΘA has strictly higher fitness than ΘB.

Whereas Definition 3’s stability notion involves comparing the performance of the two models
when one of them is present in an arbitrarily small fraction, stability with an interior
population share as in Definition 9 refers to both models co-existing with equal fitness in a
way that is robust to local perturbations of population sizes.

4.3 Centipede Games and Analogy-Based Reasoning

We now analyze analogy-based reasoning in the centipede game in Figure 2 (there is only
one situation, given by the payoffs in this game). P1 and P2 take turns choosing Across (A)
or Drop (D). The non-terminal nodes are labeled nk, 1 ≤ k ≤ K where K is an even number.
P1 acts at odd nodes and P2 acts at even nodes, where choosing Drop at nk leads to the
terminal node zk. If Across is always chosen, then the terminal node zend is reached. Every
time a player i chooses Across, the sum of payoffs grows by g > 0, but if the opponent chooses
Drop next, i’s payoff is ℓ > 0 smaller than i’s payoff had they chosen Drop, with ℓ > g. Thus,
if zend is reached, both get Kg/2; if zk is reached when k is odd, both players obtain g(k−1)

2 ;
and if if zk is reached when k is even, P1 obtains k−2

2 g − ℓ, and P2 obtains k
2g + ℓ.
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A

Figure 2: The centipede game. P1 (blue) and P2 (red) alternate in choosing Across (A) or
Drop (D). Payoff profiles are shown at the terminal nodes.

While this is an asymmetric stage game, we study a symmetrized version where two
matched agents are randomly assigned into the roles of P1 and P2. Let A = {(dk)Kk=1 ∈ [0, 1]K},
so each strategy is characterized by the probabilities of playing Drop at various nodes in
the game tree. When assigned into the role of P1, the strategy (dk) plays Drop with
probabilities d1, d3, ..., dK−1 at nodes n1, n3, ...nK−1. When assigned into the role of P2, it
plays Drop with probabilities d2, d4, ..., dK at nodes n2, n4, ...nK . The set of consequences
is Y = {1, 2} × ({zk : 1 ≤ k ≤ K} ∪ {zend}), where the first dimension of the consequence
returns the player role that the agent was assigned into, and the second dimension returns the
terminal node reached. Let F • : A2 → ∆(Y) be the objective distribution over consequences.

All agents know the game tree (i.e., F •), but some might adhere to a model which
mistakenly assumes that their opponent plays Drop with the same probabilities at all of
their nodes. Formally, define the restricted space of strategies AAn := {(dk) ∈ [0, 1]K : dk =
dk

′ if k ≡ k
′(mod 2)} ⊆ A. The correctly specified extended model is Θ• := A × A × {F •}.

The misspecified model of interest is ΘAn := AAn × AAn × {F •}, reflecting a dogmatic belief
that opponents play the same mixed action at all nodes in the analogy class. We emphasize
these restriction on strategies only exists in the subjective beliefs of the model ΘAn adherents.
All agents, regardless of their model, actually have the strategy space A.

4.4 Results

The next proposition provides a justification for why we might expect agents with coarse
analogy classes given by AAn to persist in the society.

Proposition 4. Suppose K ≥ 4 and g > 2
K−2ℓ. For any matching assortativity λ ∈ [0, 1], the

correctly specified extended model Θ• is evolutionarily stable with strategic uncertainty against
itself, but it is not evolutionarily stable with strategic uncertainty against the misspecified
extended model ΘAn

. Also, ΘAn is not evolutionarily stable against Θ•, unless λ = 1.

Thus, the correctly specified extended model is not evolutionarily stable against a coarse
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reasoner for any level of assortativity. Here, the conditional fitness of ΘAn against both Θ•

and ΘAn can strictly improve on the correctly specified residents’ equilibrium fitness. This is
because the matches between two adherents of Θ• must result in Dropping at the first move
in equilibrium, while matches where at least one player is an adherent of ΘAn either lead to
the same outcome or lead to a Pareto dominating payoff profile as the misspecified agent
misperceives the opponent’s continuation probability and thus chooses Across at almost all
of the decision nodes.

However, ΘAn is not evolutionarily stable against Θ• either. The correctly specified agents
can exploit the analogy reasoners’ mistake and receive higher payoffs in matches against them
than the misspecified agents receive in matches against each other. Hence, no homogeneous
population can be stable, as the resident model would have lower fitness than the mutant
model in equilibrium. Thus we determine stable shares as defined in Section 4.2, focusing on
the EZ-SU where Across is played as often as possible.

We take λ = 0 throughout the remainder of this section. Suppose K ≥ 4 and g > 2
K−2ℓ.

Consider the maximal continuation EZ-SU : (1) misspecified agents always play Across except
at node K where they choose Drop, and (2) correctly specified agents (i) matched with
misspecified agents play Drop at nodes K − 1 and K and Across otherwise, and (ii) matched
with correctly specified agents always play Drop. We verify this indeed forms an EZ-SU.

Proposition 5. Suppose λ = 0, K ≥ 4 and g > 2
K−2ℓ. The only stable population share

(p∗
A, p

∗
B) supported by the maximal continuation EZ-SU described above is p∗

B = 1 − ℓ
g(K−2) .

We have p∗
B is strictly increasing in g and K, and strictly decreasing in ℓ.

Intuitively, p∗
B reflects the fraction of society expected to be analogy reasoners if long run

population changes are determined by fitness. Under the maintained assumption g > 2
K−2ℓ,

the stable population share of misspecified agents is strictly more than 50%, and the share
grows with more periods and a larger increase in payoffs from contintuation. The main
intuition is that the misspecified model has a higher conditional fitness than the rational
model against rational opponents. The former leads to many periods of continuation and
a high payoff for the biased agent when the rational agent eventually drops, but the latter
leads to 0 payoff from immediate dropping. On the other hand, the misspecified model has a
lower conditional fitness than the rational model against misspecified opponents. For the
two groups to have the same expected fitness, there must be fewer rational opponents (i.e., a
smaller stable population share p∗

A) when g and K are higher.
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Note that, when payoffs are specified as above, two successive periods of continuation lead
to a strict Pareto improvement in payoffs. Consider instead the dollar game (Reny, 1993)
in Figure 3, a variant with a more “competitive” payoff structure, where an agent always
gets zero when the opponent plays Drop, at all parts of the game tree. Assume total payoff
increases by 1 in each round. If the first player stops immediately,payoffs are (1, 0), and if
the second player continues at the final node nK , payoffs are (K + 2, 0).

(1,0)  (0, 2) (3, 0)

n1 n2 n3

D D D

A A A

  ( K-1, 0) (0, K)

nK-1 nK

D D

A... A (K+2, 0)A

Figure 3: The dollar game. Players 1 (blue) and 2 (red) alternate in choosing Across (A) or
Drop (D). Payoff profiles are shown at the terminal nodes.

Proposition 6. For λ = 0 and every population size (p, 1 − p) with p ∈ [0, 1], the maximal
continuation EZ-SU is an EZ-SU where the fitness of Θ• is strictly higher than that of ΘAn.

While maximal continuation remains an EZ-SU, the rational model strictly outperforms
the misspecified model for all population shares. Provided the maximal continuation EZ-SU
remains focal, we would expect no analogy reasoners in the long run with this stage game.
Intuitively, the payoffs imply one player can only do better at the expense of the opponent.
Since λ = 0, this implies the less cooperative strategy will be selected.

In a recent survey, Jehiel (2020) points out that the misspecified Bayesian learning
approach to analogy classes should aim for “a better understanding of how the subjective
theories considered by the players may be shaped by the objective characteristics of the
environment.”13 Taken together, our analysis in this section provides predictions regarding
when coarse reasoning should be more prevalent, specifically when the payoff structure is
“less competitive.” When this is indeed the case, the bias become more prevalent with a longer
horizon and with faster payoff growth.

13Jehiel (2020) interprets ABEEs as players adopting the “simplest” explanations of observed aggregate
statistics of play with coarse feedback. An objectively coarse feedback structure can lead agents to adopt the
subjective belief that others behave in the same way in all contingencies in the same coarse analogy class.
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5 Related Literature

Our paper contributes to the literature on misspecified Bayesian learning by proposing a
framework to assess which specifications are more likely to persist based on their objective
performance. Our two main contributions are to highlight that misinference in such a
framework allows for (1) tailored commitments and (2) polymorphism. Most prior work
on misspecified Bayesian learning takes the misspecification as exogenous, studying the
subsequent implications in both single-agent decision problems14 and multi-agent games.15 A
number of papers establish general convergence properties of misspecified learning.16 Our
approach to endogenizing misspecified inference contrasts with those involving subjective
expectations of payoffs17 or goodness-of-fit tests.18 To our knowledge, past work that has used
objective payoffs to endogenize misspecified inference has restricted attention to financial
markets (Sandroni, 2000; Massari, 2020).

This paper is closest to two independent and contemporaneous papers, Fudenberg and
Lanzani (2022) and Frick, Iijima, and Ishii (2024), who consider welfare-based criteria
for selecting among misspecifications in single-agent decision problems.19 We differ in
highlighting that the learning channel can strictly expand the possibility for misspecifications
to invade rational societies in strategic settings (relative to biased invaders who do not draw
inferences), and we show that misspecifications can lead to different best responses in different
environments and thus induce new stability phenomena.

Our framework of competition between different specifications for Bayesian learning
is inspired by the evolutionary game theory literature. Relative to this literature, our
contribution is to accommodate misspecified inference. We follow past work that also uses

14See Nyarko (1991); Fudenberg, Romanyuk, and Strack (2017); Heidhues, Koszegi, and Strack (2018); He
(2022). Also related is Fudenberg et al. (2024) who show how memory limitations yield inferences resembling
those in misspecified learning models.

15See Bohren (2016); Bohren and Hauser (2021); Jehiel (2018); Molavi (2019); Dasaratha and He (2020);
Ba and Gindin (2022); Frick, Iijima, and Ishii (2020); Murooka and Yamamoto (2023).

16See Esponda and Pouzo (2016); Esponda, Pouzo, and Yamamoto (2021); Frick, Iijima, and Ishii (2022);
Fudenberg, Lanzani, and Strack (2021).

17See Olea, Ortoleva, Pai, and Prat (2022); Levy, Razin, and Young (2022); Gagnon-Bartsch, Rabin, and
Schwartzstein (2021)

18See Cho and Kasa (2015, 2017); Ba (2022); Schwartzstein and Sunderam (2021); Lanzani (2022).
19Fudenberg and Lanzani (2022) study a framework where a continuum of agents with heterogeneous

misspecifications arrive each period and learn from their predecessors’ data. Frick, Iijima, and Ishii (2024)
assign a learning efficiency index to every misspecified signal structure and conduct a robust comparison of
welfare under different misspecifications.
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objective payoffs as the selection criterion for subjective preferences in games and decision
problems (e.g., Dekel, Ely, and Yilankaya (2007), see also the surveys Robson and Samuelson
(2011) and Alger and Weibull (2019)) and the evolution of constrained strategy spaces (Heller,
2015; Heller and Winter, 2016). Like us, Güth and Napel (2006) allow for stage-game
heterogeneity, studying the ability to discriminate between these games.

When agents entertain fundamental uncertainty about payoff parameters, our framework
applies evolutionary forces to sets of preferences (i.e., models with multiple possible parameter
values). This allows us to ask our central question: When does the ability to draw inference
expand the scope for errors to invade rational societies? Developing a framework that
accommodates inference is necessary to answer this question, providing the main point
of departure from the literature on the indirect evolutionary approach. Our emphasis on
Bayesian learning also distinguishes our work from papers that study the evolution of different
belief-formation processes (Heller and Winter, 2020; Berman and Heller, 2022), who take a
reduced-form (and possibly non-Bayesian) approach and consider arbitrary inference rules.

6 Concluding Discussion

We have introduced an evolutionary approach to predict the persistence of misspecified
Bayesian learning. We have emphasized the implications and significance of the learning
channel for evolutionary stability and the viability of biases. Our contributions are twofold.
First, we show that the learning channel may confer strategic benefits in cases where dogmatic
beliefs do not. This is because the learning channel enables flexible commitments that are
tailored to the realized situation. Second, we show that misspecified agents are polymorphic.
For this reason, the performance of a fixed bias may be difficult to extrapolate across
environments. More broadly, we hope to have shown that incorporating inference enables the
evolutionary approach to speak to new applications and patterns.

The idea that agents’ personal experiences (and more broadly, the environments that
generate these experiences) shape their preferences beyond their individual characteristics is
empirically well documented. For instance, recent work studying attitudes toward immigrants
(Bursztyn et al. (2022)) or attitudes among immigrants (Bolotnyy et al. (2022)) find that
variation in a person’s environment—plausibly independent from individual characteristics—
can considerably influence their political behavior and preferences. In an experiment with
Indian men, Lowe (2021) finds that favoritism for one’s own caste changes in response to

27



cross-caste contacts, in a way that depends on whether interactions are competitive or
cooperative. Our framework derives the implications of these kinds of preference-formation
mechanisms on the stability of misspecified models.

We acknowledge that our framework does not account for which errors appear in the first
place. It is plausible that some first-stage filter prevents certain obvious misspecifications
from ever reaching the stage that we study in the evolutionary framework. For this reason,
the applications we focused on reflected misspecifications that seem psychologically plausible.

We have used an otherwise off-the-shelf framework to describe the selection of specifications.
The goal of this paper is not to identify suitable definitions of fitness to justify particular
errors (which is the focus for many of the papers that Robson and Samuelson (2011) survey).
Rather, our goal has been to determine what evolutionary forces would suggest about the
emergence of misspecified learning, and implications thereof. We have therefore focused more
on the implications of the learning channel in an otherwise standard evolutionary setup.
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Appendix
A Proofs of Key Results from the Main Text

A.1 Proof of Theorem 1

Part 1: Let V be the convex hull of {(vbG)G∈G | b : A ⇒ A}, and let U = {(uG)G∈G :
uG ≤ vG for all G for some v ∈ V}. Note U is closed and convex (since V is convex). By
hypothesis, vNE is not in the interior or on the boundary of U . So by the separating hyperplane
theorem, there exists a real number c and a vector q ∈ R|G| with qG ̸= 0 for every G, so
that q · vNE > c > q · u for every u ∈ U . Furthermore, qG ≥ 0 for every G. This is because if
qG′ < 0 for some G′, then since U contains vectors with arbitrarily negative values in the G′

dimension, we cannot have q · vNE ≥ q · u for every u ∈ U . We may then without loss view q

as a distribution on G. In fact, we can take q to be full support. To see this, note that since
|G| < ∞ and U is convex, we have

lim
ε→0

max
v∈U

[
(1 − ε)q + ε

|G|
(1, 1, . . . , 1)

]
· v = max

v∈U
q · v,

by continuity of the support function of convex sets in Rn (given that the support function
on U is bounded for all q ≥ 0, since vbG is bounded above for every b and every G). Thus,
setting q̃(ε) = (1 − ε)q + ε

|G|(1, 1, . . . , 1), we have q̃(ε) is a full support distribution with
q̃(ε) · vNE > c > q̃(ε) · u whenever ε is sufficiently small, since we have that these inequalities
hold in the limit.

Now consider any singleton model Θ = {F}, and let b : A ⇒ A be the subjective best-
response correspondence that F induces. If vbG ≠ −∞ for every G, then, for each G we can
find a strategy profile (aGi , aG−i) where aGi ∈ b(aG−i), aG−i is a rational best response to aGi in
situation G, and the strategy pair gives utility vbG to the first player. For any population
shares of the two models, there is an EZ where the resident correctly specified agents get
vNE
G in situation G when playing against each other, and the mutants with model Θ play

(ai, a−i) in matches against the residents and get utility vbG in the same situation. Under the
distribution of situations q, as the fraction of the mutants approaches 0, the residents’ fitness
approaches q · vNE while that of the mutants approaches q · vb, and the former is strictly
larger by construction of q since vb ∈ U . This EZ shows the correctly specified model is not
evolutionarily fragile against {F}. Otherwise, if we have that vbG = −∞ for some G, then
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there are no EZs, so the correctly specified model is not evolutionarily fragile against {F} by
the emptiness of the set of EZs.

Part 2: Suppose the hypotheses hold and let us construct the misspecified model
Θ̂ = {FG : G ∈ G}. To define the parameters FG, first consider F̃G where F̃G(ai, a−i) :=
F •(ai,BR(ai, G), G) for every a−i ∈ A. Now for each (ai, a−i, G) ∈ A×A× G, define the full-
support distribution FG(ai, a−i) ∈ ∆(Y) as a sufficiently small perturbation of the F̃G(ai, a−i),
such that for every ai, a−i ∈ A and every G ∈ G, minĜ∈G KL(F •(ai, a−i, G) ∥ FĜ(ai, a−i)) has
a unique solution. This can be done because there are finitely many strategies and situations.

Consider any EZ Z with the correctly specified resident, Θ̂ as the mutant, λ = 0. By
situation identifiability, in Z the correctly specified residents must believe in the true F •(·, ·, G)
in every situation G. When the fraction of mutants ϵ > 0 is sufficiently small, the mutants
cannot hold a mixed belief in any situation G, by the construction of the parameters in
Θ̂ to rule out ties in KL divergence. We show further that mutants must believe in FG in
situation G for ϵ small enough. This is because if they instead believed in FG′ for some
G′ ̸= G, then they must play āG′ as the Stackelberg strategy is assumed to be unique.
Let a−i be the rational best response to āG′ in situation G and a′

−i be the rational best
response to āG′ in situation G′, both unique by assumption. In their matches against the
residents, the mutants’ expected distribution of consequences FG′(āG′ , a−i) is a perturbed
version of F •(āG′ , a′

−i, G
′), while the true distribution of consequences F •(āG′ , a−i, G) is a

perturbed version of FG(āG′ , a−i). We have F •(āG′ , a′
−i, G

′) ̸= F •(āG′ , a−i, G) by Stackelberg
identifiability, so KL(F •(āG′ , a−i, G) ∥ FG(āG′ , a−i)) < KL(F •(āG′ , a−i, G) ∥ FG′(āG′ , a−i))
when the perturbations are sufficiently small. When ϵ > 0 is small enough, this contradicts
the mutants believing in FG′ in situation G as the parameter FG generates smaller weighted
KL divergence across all of the mutant’s data (since data from matches against mutants
get weighted by ϵ and the full-support nature of all processes in the model implies that KL
divergence of the data from such matches is bounded). So the mutants get the Stackelberg
payoff in each situation when playing the resident, which means they have higher fitness than
the residents in every EZ for ϵ small enough, since v̄G > vNE

G for at least one situation and q

has full support. Finally, there exists at least one EZ: for ϵ > 0 small enough, it is an EZ for
the residents to believe in F •(·, ·, G) in every situation G, to play the symmetric Nash profile
that results in vNE

G when matched with other residents (this profile exists by hypothesis of the
theorem), and for the mutants to believe in FG and play (āG,BR(āG, G)) in matches against
residents in situation G.
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A.2 Proof of Proposition 1

Proof. Let two singleton models ΘA,ΘB be given. By contradiction, suppose they exhibit
stability reversal. Let Z = (µA, µB, p = (0, 1), λ = 0, (a)) be any EZ where ΘB is resident. By
the definition of EZ, Z′ = (µA, µB, p = (1, 0), λ = 0, (a)) is also an EZ where ΘA is resident.
Let ug,g′ be model Θg’s conditional fitness against group g

′ in the EZ Z
′ . Part (i) of the

definition of stability reversal requires that uAA > uBA and uAB > uBB. These conditional
fitness levels remain the same in Z. This means the fitness of ΘA is strictly higher than that
of ΘB in Z, a contradiction.

A.3 Proof of Proposition 2

Proof. To show the first claim, suppose Z = (µA, µB, p = (1, 0), λ = 0, (aAA, aAB, aBA, aBB))
is an EZ, and Z̃ = (µA, µB, p = (0, 1), λ = 0, (ãAA, ãAB, ãBA, ãBB)) is another EZ where
the adherents of ΘB hold the same belief µB (group A’s belief cannot change as ΘA is the
correctly specified singleton model). By the optimality of behavior in Z, aBA best responds
to aAB under the belief µB, and aAB best responds to aBA under the belief µA, therefore
Z̃

′ = (µA, µB, p = (0, 1), λ = 0, (ãAA, aAB, aBA, ãBB)) is another EZ. This holds because the
distributions of observations for the adherents of ΘB are identical in Z̃ and Z̃

′ , since they only
face data generated from the profile (ãBB, ãBB). At the same time, since ãBB best responds to
itself under the belief µB, we have that Z′ = (µA, µB, p = (1, 0), λ = 0, (aAA, aAB, aBA, ãBB)) is
an EZ. Part (i) of the definition of stability reversal applied to Z

′ requires that U•(aAB, aBA) >
U•(ãBB, ãBB) (where U• is the objective expected payoffs), but part (ii) of the same definition
applied to Z̃

′ requires U•(ãBB, ãBB) ≥ U•(aAB, aBA), a contradiction.
To show the second claim, by way of contradiction suppose ΘB is strategically independent

and Z = (µA, µB, p = (0, 1), λ = 0, (aAA, aAB, aBA, aBB)) is an EZ. By strategic independence,
the adherents of ΘB find it optimal to play aBB against any opponent strategy under
the belief µB. So, there exists another EZ of the form Z

′ = (µ′
A, µB, p = (0, 1), λ =

0, (aAA, a
′
AB, aBB, aBB)), where a′

AB is an objective best response to aBB. The belief µB is
sustained because in both Z and Z

′ , the adherents of ΘB have the same data: from the strategy
profile (aBB, aBB). In Z

′ , ΘA ’s fitness is U•(a′
AB, aBB) and ΘB’s fitness is U•(aBB, aBB).

We have U•(a′
AB, aBB) ≥ U•(aBB, aBB) since a

′
AB is an objective best response to aBB,

contradicting the definition of stability reversal.
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A.4 Proof of Proposition 3

Proof. By the hypotheses, find ϵ̄ > 0 so that for every 0 < ϵ ≤ ϵ̄, there exists at least one EZ
for λ = 0 and for λ = 1, and furthermore ΘA’s fitness is weakly higher than that of ΘB in all
such EZs. Let λ ∈ [0, 1] be given and for any 0 < ϵ ≤ ϵ̄, let Z = (µA, µB, p = (1 − ϵ, ϵ), λ, (a))
be an EZ. Since ΘA,ΘB are singleton models, Z0 = (µA, µB, p = (1 − ϵ, ϵ), λ = 0, (a))
and Z1 = (µA, µB, p = (1 − ϵ, ϵ), λ = 1, (a)) are also EZs. Let ug,g′ represent model Θg’s
conditional fitness against group g

′ in each of these three EZs. In the EZs with λ = 0 and
λ = 1, stability implies (1 − ϵ)uAA + ϵuAB ≥ ϵuBB + (1 − ϵ)uBA and uAA ≥ uBB. But this
means (1 −λ) · [(1 − ϵ)uAA + ϵuAB] +λ · [uAA] ≥ (1 −λ) · [ϵuBB + (1 − ϵ)uBA] +λ · [uBB], which
says ΘA has weakly higher fitness than ΘB in this EZ with the arbitrary λ ∈ [0, 1]. Also, at
least one such EZ exists with assortativity λ, for at least one EZ exists when λ = 0, and the
same equilibrium belief and behavior also constitutes an EZ for any other assortativity.

A.5 Details Behind Example 2

Let b∗(ai, a−i) solve minb∈RDKL(F •(ai, a−i) ∥ F̂ (ai, a−i; b,m))), where F •(ai, a−i) is the objec-
tive distribution over observations under the investment profile (ai, a−i), and F̂ (ai, a−i; b,m)
is the distribution under the same investment profile in the model where productivity is given
by P = b(xi + x−i) −m+ ϵ. We find that b∗(ai, a−i) = b• + m

ai+a−i
. That is, adherents of ΘB

end up with different beliefs about the game parameter b depending on the behavior of their
typical opponents, which in turn affects how they respond to different rival investment levels.
Stability reversal happens because when ΘA is resident and the adherents of ΘB always meet
opponents who play ai = 1, they end up with a more distorted belief about the fundamental
than when ΘB is resident.

A.6 Proof of Example 2

Proof. Define b∗(ai, a−i) := b•+ m
ai+a−i

. It is clear thatDKL(F •(ai, a−i) ∥ F̂ (ai, a−i; b∗(ai, a−i),m))) =
0, while this KL divergence is strictly positive for any other choice of b.

In every EZ with λ = 0 and p = (1, 0), we must have aAA = aAB = 1. If aBA = 2,
then the adherents of ΘB infer b∗(1, 2) = b• + m

3 . With this inference, the biased agents
expect 1 · (2(b• + m

3 ) −m) = 2b• − m
3 from playing 1 against rival investment 1, and expect

2 ·(3(b• + m
3 )−m)−c = 6b• −c from playing 2 against rival investment 1. Since 4b• + m

3 −c > 0
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from Condition 2, there is an EZ with aBA = 2 and µB puts probability 1 on b• + m
3 . It is

impossible to have aBA = 1 in EZ. This is because b∗(1, 1) > b∗(1, 2), and under the inference
b∗(1, 2) we already have that the best response to 1 is 2, so the same also holds under any
higher belief about complementarity. Also, we have aBB = 2, since 2 must best respond to
both 1 and 2. So in every such EZ, ΘA’s conditional fitness against group A is 2b• and ΘB’s
conditional fitness against group A is 6b• − c, with 2b• > 6b• − c by Condition 1. Also, ΘA’s
conditional fitness against group B is 3b•, while ΘB’s conditional fitness against group B is
8b• − c. Again, 3b• > 8b• − c by Condition 1.

Next, we show ΘB has strictly higher fitness than ΘA in every EZ with λ = 0, pB = 1.
There is no EZ with aBB = 1. This is because b∗(1, 1) = b•+m

2 . As discussed before, under this
inference the best response to 1 is 2, not 1. Now suppose aBB = 2. Then µB puts probability 1
on b∗(2, 2) = b• + m

4 . With this inference, the biased agents expect 1 ·(3(b• + m
4 )−m) = 3b• − m

4

from playing 1 against rival investment 2, and expect 2 · (4(b• + m
4 ) − m) − c = 8b• − c

from playing 2 against rival investment 2. We have 5b• + m
4 − c > 0 from Condition 2, so 2

best responds to 2. We must have aAA = aAB = 1. We conclude the unique EZ behavior is
(aAA, aAB, aBA, aBB) = (1, 1, 1, 2), since the biased agents expect 1 · (2(b• + m

4 )−m) = 2b• − m
2

from playing 1 against rival investment 1, and expect 2 · (3(b• + m
4 ) −m) − c = 6b• − m

2 − c

from playing 2 against rival investment 1. We have 4b• − c < 0 from Condition 1, so 1 best
responds to 1. In the unique EZ with λ = 0 and p = (0, 1), the fitness of ΘA is 2b• and the
fitness of ΘB is 8b• − c, where 8b• − c > 2b• by Condition 1.

A.7 Proof of Example 3

Proof. Let KL4,1 := 0.4 · ln 0.4
0.1 + 0.6 · ln 0.6

0.9 ≈ 0.3112, KL4,8 := 0.4 · ln 0.4
0.8 + 0.6 · ln 0.6

0.2 ≈
0.3819, and KL2,4 := 0.2 · ln 0.2

0.4 + 0.8 · ln 0.8
0.6 ≈ 0.0915. Let λh be the unique solution to

(1 − λ)KL2,4 − λ(KL4,8 −KL4,1) = 0, so λh ≈ 0.564.
We show for any λ ∈ [0, λh), for all sufficiently small ϵ > 0, there exists a unique EZ

Z = (ΘA,ΘB, µA, µB, p = (1 − ϵ, ϵ), λ, (a)), and that this EZ has µB putting probability 1 on
FH , aAA = a1, aAB = a1, aBA = a2, aBB = a2. First, we may verify that under FH , a2 best
responds to both a1 and a2. Also, in the limit of ϵ → 0, the KL divergence of FH approaches
λ ·KL4,8 while that of FL approaches λ ·KL4,1 + (1 − λ) ·KL2,4. Since λ < λh, we see that
for all sufficiently small ϵ > 0, FH has strictly lower KL divergence. Finally, to check that
there are no other EZs, note we must have aAA = a1, aAB = a1, aBA = a2 in every EZ. In an
EZ where aBB puts probability q ∈ [0, 1] on a2, as ϵ → 0 the KL divergence of FH approaches
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λp ·KL4,8 and the KL divergence of FL approaches λp ·KL4,1 + (1 − λ) ·KL2,4. We have

λq·KL4,1+(1−λ)·KL2,4−λq·KL4,8 = λq·(KL4,1−KL4.8)+(1−λ)KL2,4 ≥ (1−λ)KL2,4−λ(KL4,8−KL4,1).

Since λ < λh, this is strictly positive. Therefore we must have µB put probability 1 on FH

(which in turn implies q = 1) when ϵ > 0 is sufficiently small.
When ΘA is dominant and pA = 1, the equilibrium fitness of ΘA is always 0.25 for every

λ. The equilibrium fitness of ΘB, as a function of λ, is 0.4λ + 0.2(1 − λ). Let λl solve
0.25 = 0.4λ+ 0.2(1 − λ), that is λl = 0.25. This shows ΘA is evolutionarily fragile against
ΘB for λ ∈ (λl, λh), and it is evolutionarily stable against ΘB for λ = 0.

Now suppose λ = 1. For sufficiently small ϵ > 0, if there is an EZ with pA = 1 where aBB
plays a2 with positive probability, then µB must put probability 1 on FL, since KL4,1 < KL4,8.

This is a contradiction, since a2 does not best respond to itself under FL. So the unique EZ
for all small enough ϵ > 0 involves aAA = a1, aAB = a1, aBA = a2, aBB = a3. In the EZ, the
fitness of ΘA approaches 0.25 and the fitness of ΘB approaches 0.2 as ϵ → 0. This shows ΘA

is evolutionarily stable against ΘB for λ = 1.

A.8 Proof of Proposition 4

Proof. When ΘA = ΘB = Θ•, for any matching assortativity λ and with any (pA, pB), we
show adherents of both models have 0 fitness in every EZ. Suppose instead that the match
between groups g and g

′ reach a terminal node other than z1 with positive probability. Let
nL be the last non-terminal node reached with positive probability, so we must have L ≥ 2,
and also that nodes n1, ..., nL−1 are also reached with positive probability. So Drop must
be played with probability 1 at nL. Since nL is reached with positive probability, correctly
specified agents hold correct beliefs about opponent’s play at nL, which means at nL−1 it
cannot be optimal to play Across with positive probability since this results in a loss of ℓ
compared to playing Drop, a contradiction.

Now let ΘA = Θ•, ΘB = ΘAn. Suppose λ ∈ [0, 1] and let pB ∈ (0, 1). We claim there is
an EZ where dkAA = 1 for every k, dkAB = 0 for every even k with k < K, dkAB = 1 for every
other k, dkBA = 0 for every odd k and dkBA = 1 for every even k, and dkBB = 0 for every k

with k < K, dKBB = 1. It is easy to see that the behavior (dAA) is optimal under correct belief
about opponent’s play. In the ΘA vs. ΘB matches, the conjecture about A’s play d̂kAB = 2/K
for k even, d̂kAB = 1 for k odd minimizes KL divergence among all strategies in AAn, given
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B’s play. To see this, note that when B has the role of P2, opponent Drops immediately.
When B has the role of P1, the outcome is always zK . So a conjecture with d̂kAB = x for every
even k has the conditional KL divergence of:

∑
k≤K−1 odd

0 · ln
(0

0

)
︸ ︷︷ ︸

(1,zk) for k≤K−1 odd

+
∑

k≤K−1 even
0 · ln

(
0

(1/2) · (1 − x)(k/2)−1 · x

)
︸ ︷︷ ︸

(1,zk) for k≤K−1 even

+ 1
2 ln

(
1/2

(1/2) · (1 − x)(K/2)−1 · x

)
︸ ︷︷ ︸

(1,zK)

+ 0 · ln
(

0
(1 − x)(K/2)

)
︸ ︷︷ ︸

(1,zend)

when matched with an opponent from ΘA. Using 0 · ln(0) = 0, the expression simplifies
to 1

2 ln
(

1
(1−x)(K/2)−1·x

)
, which is minimized among x ∈ [0, 1] by x = 2/K. Against this

conjecture, the difference in expected payoff at node nK−1 from Across versus Drop is
(1−2/K)(g)+(2/K)(−ℓ). This is strictly positive when g > 2

K−2ℓ. This means the continuation
value at nK−1 is at least g larger than the payoff of Dropping at nK−3, so again Across has
strictly higher expected payoff than Drop. Inductively, (dkBA) is optimal given the belief
(d̂kAB). Also, (dkAB) is optimal as it results in the highest possible payoff. We can similarly
show that the conjecture d̂kBB with d̂kBB = 2/K for k even, d̂kBB = 0 for k odd minimizes KL
divergence conditional on ΘB opponent, and (dkBB) is optimal given this conjecture.

As pB → 0, we find an EZ where adherents of A have fitness approaching 0, whereas the
adherents of B have fitness approaching at least 1

2(((K/2) − 1)g − ℓ) > 0 since g > 2
K−2ℓ.

This shows ΘA is not evolutionarily stable against ΘB.
But consider the same (dAA, dAB, dBA) and suppose dkBB = 1 for every k. Taking pB → 1,

with λ < 1, we find an EZ where adherents of B have fitness 0, adherents of A have fitness
(1 − λ) · 1

2 · ((K/2)g + ℓ) > 0. This shows ΘB is not evolutionarily stable against ΘA.

A.9 Proof of Proposition 5

Proof. In the centipede game, suppose g > 2
K−2ℓ. the misspecified agent thinks a group

B agent in the role of P2 and a group A agent in either role has a probability 2/K of
stopping at every node. Under this belief, choosing to continue instead of drop means
there is a (K − 2)/K chance of gaining g, but a 2/K chance of losing ℓ. Since we assume
g > 2

K−2ℓ, it is strictly better to continue. When p fraction of the agents are correctly
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specified, the fitness of Θ• is p · 0 + (1 − p) · (1
2
g(K−2)

2 + 1
2(gK2 + ℓ)), while the fitness of

ΘAn is p · [1
2(g(K−2)

2 − ℓ) + 1
2
g(K−2)

2 ] + (1 − p)[1
2(g(K−2)

2 − ℓ) + 1
2(gK2 + ℓ)]. The difference in

fitness is −p[1
2(g(K−2)

2 − ℓ) + 1
2
g(K−2)

2 ] + (1 − p)1
2ℓ. Simplifying, this is 1

2ℓ− p · g(K−2)
2 , a strictly

decreasing function in p. When p = ℓ
g(K−2) , which is a number strictly between 0 and 1/2

from the assumption g > 2
K−2ℓ in the centipede game, the two models have the same fitness.

Furthermore, since the payoff difference is linear in p with a negative slope, the difference
in fitness is negative when p > ℓ

g(K−2)—so that ΘAn outperforms Θ• under these population
shares—and conversely, the difference in fitness is positive when p < ℓ

g(K−2) . Thus, we have
this fraction of the population being correctly specified forms a stable population share.

A.10 Proof of Proposition 6

Proof. In the ΘAn vs. ΘAn match, the adherents of ΘAn hold the belief that d̂kBB = 2/K for
every even k. In the role of P1, at node k for k ≤ K−3, stopping gives them k but continuing
gives them a (K− 2)/K chance to get at least k+ 2, and we have k ≤ K−2

K
(k+ 2) ⇐⇒ 2k ≤

2K − 4 ⇐⇒ k ≤ K − 2. At node K − 1, the agent gets K − 1 from dropping but expects
(K + 2) · K−2

K
from continuing, and (K + 2) · K−2

K
− (K − 1) = K2−4−K2+K

K
= K−4

K
> 0 since

K ≥ 6.
In the Θ• vs. ΘAn match, the adherents of ΘAn hold the belief that d̂kAB = 2/K for every

k. By the same arguments as before, the behavior of the adherents of ΘAn are optimal given
these beliefs. Also, the adherents of Θ• have no profitable deviations since they are best
responding both as P1 and P2.

When p fraction of the agents are correctly specified, in the dollar game the fitness of Θ•

is p · 0.5 + (1 − p) · (1
2(K − 1) + 1

2K), while the fitness of ΘAn is p · 0 + (1 − p) · (1
2 · 0 + 1

2K).
For any p, the fitness of Θ• is strictly higher than that of ΘAn.

B Existence and Continuity of EZ

We provide a few technical results about the existence of EZ and the upper-hemicontinuity of
the set of EZs with respect to population share. We suppose that |G| = 1 for simplicity, but
analogous results would hold for environments with multiple situations. Note that the same
learning channel that generates new stability phenomena in Section 3 also leads to some
difficulty in establishing existence and continuity results, as agents draw different inferences
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with different interaction structures.
Let two models, ΘA,ΘB be fixed. Also fix population shares p and matching assortativity λ.

Let UA : A2 ×ΘA → R be such that UA(ai, a−i;F ) = Ui(ai, a−i; δF ) and let UB : A2 ×ΘB → R
be such that UB(ai, a−i;F ) = Ui(ai, a−i; δF ).

Assumption A.1. A,ΘA,ΘB are compact metrizable spaces.

Assumption A.2. UA, UB are continuous.

Assumption A.3. For every F ∈ ΘA ∪ ΘB and ai, a−i ∈ A, K(F ; ai, a−i) is well-defined
and finite.

Under Assumption A.3, we have the well-defined functions KA : ΘA × A2 → R+ and
KB : ΘB × A2 → R+, where Kg(F ; ai, a−i) := DKL(F •(ai, a−i) ∥ F (ai, a−i)).

Assumption A.4. KA and KB are continuous.

Assumption A.5. A is convex and, for all a−i ∈ A and µ ∈ ∆(ΘA) ∪ ∆(ΘB), ai 7→
Ui(ai, a−i;µ) is quasiconcave.

We show existence of EZ using the Kakutani-Fan-Glicksberg fixed point theorem, applied
to the correspondence which maps strategy profiles and beliefs over parameters into best
replies and beliefs over KL-divergence minimizing parameter. We start with a lemma.

Lemma A.1. For g ∈ {A,B}, a = (aAA, aAB, aBA, aBB) ∈ A4, and 0 ≤ mg ≤ 1, let

Θ∗
g(a,mg) := arg min

F̂∈Θg

{
mg ·K(F̂ ; ag,g, ag,g) + (1 −mg) ·K(F̂ ; ag,−g, a−g,g)

}
.

Then, Θ∗
g is upper hemicontinuous in its arguments.

This lemma says the set of KL-minimizing parameters is upper hemicontinuous in strategy
profile and matching assortativity. This leads to the existence result.

Proposition A.1. Under Assumptions A.1, A.2, A.3, A.4, and A.5, an EZ exists.

Next, upper hemicontinuity in mg in Lemma A.1 allows us to deduce the upper hemicon-
tinuity of the EZ correspondence in population shares.

Proposition A.2. Fix two models ΘA,ΘB. Also fix matching assortativity λ ∈ [0, 1]. The
set of EZ is an upper hemicontinuous correspondence in pB under Assumptions A.1, A.2,
A.3, and A.4.
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B.1 Proofs of Results in Appendix B

B.1.1 Proof of Lemma A.1

Proof. Write the minimization objective as

W (a, F,mg) := mgKg(F ; ag,g, ag,g) + (1 −mg)Kg(F ; ag,−g, a−g,g),

a continuous function of (a, F,mg) by Assumption A.4. Suppose we have a sequence
(a(n),m(n)

g ) → (a∗,m∗
g) ∈ A4×[0, 1] and let F (n) ∈ Θ∗

g(a(n),m(n)
g ) for each n, with F (n) → F ∗ ∈

Θg. For any other F̂ ∈ Θg, note that W (a∗,m∗
g, F̂ ) = limn→∞ W (a(n),m(n)

g , F̂ ) by continuity.
But also by continuity, W (a∗,m∗

g, F
∗) = limn→∞ W (a(n),m(n)

g , F (n)) and W (a(n),m(n)
g , F (n)) ≤

W (a(n),m(n)
g , F̂ ) for every n. It therefore follows W (a∗,m∗

g, F
∗) ≤ W (a∗,m∗

g, F̂ ).

B.1.2 Proof of Proposition A.1

Proof. Consider the correspondence Γ : A4 × ∆(ΘA) × ∆(ΘB) ⇒ A4 × ∆(ΘA) × ∆(ΘB),

Γ(aAA, aAB, aBA, aBB, µA, µB) :=

(BR(aAA, µA),BR(aBA, µA),BR(aAB, µB),BR(aBB, µB),∆(Θ∗
A(a)),∆(Θ∗

B(a))),

where BR(a−i, µg) := arg max
âi∈A

Ug(âi, a−i;µg) and, for each g ∈ {A,B}, the correspondence Θ∗
g

is defined with mg = λ+ (1 − λ)pg, m−g = 1 −mg. It is clear that fixed points of Γ are EZ.
We apply the Kakutani-Fan-Glicksberg theorem (see, e.g, Corollary 17.55 in Aliprantis

and Border (2006)). By Assumptions A.1 and A.5, A is acompact and convex metric space,
and each Θg is a compact metric space, so it follows the domain of Γ is a nonempty, compact
and convex metric space. We need only verify that Γ has closed graph, non-empty values,
and convex values.

To see that Γ has closed graph, the previous lemma shows the upper hemicontinuity of
Θ∗
A(a) and Θ∗

B(a) in a, and Theorem 17.13 of Aliprantis and Border (2006) then implies
∆(Θ∗

A(a)) and ∆(Θ∗
B(a)) are also upper hemicontinuous in a. It is a standard argument

that since Assumption A.2 supposes UA, UB are continuous, it implies the best-response
correspondences BR(aAA, µA), BR(aBA, µA), BR(aAB, µB), BR(aBB, µB) have closed graphs.

To see that Γ is non-empty, recall that each âi 7→ Ug(âi, a−i;µg) is a continuous function on
a compact domain, so it must attain a maximum on A. Similarly, the minimization problem
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that defines each Θ∗
g(a) is a continuous function of F over a compact domain of possible F ’s,

so it attains a minimum. Thus each ∆(Θ∗
g(a)) is the set of distributions over a non-empty set.

To see that Γ is convex valued, clearly ∆(Θ∗
A(a)) and ∆(Θ∗

B(a)) are convex valued by
definition. Also, âi 7→ UA(âi, aAA;µA) is quasiconcave by Assumption A.5. That means if
a

′
i, a

′′
i ∈ BR(aAA, µA), then for any convex combination ãi of a′

i, a
′′
i , we have UA(ãi, aAA; µA) ≥

min(UA(a′
i, aAA; µA), UA(a′′

i , aAA;µA)) = maxâi∈A UA(âi, aAA;µA). Therefore, BR(aAA, µA) is
convex. For similar reasons, BR(aBA, µA), BR(aAB, µB), BR(aBB, µB) are convex.

B.1.3 Proof of Proposition A.2

Proof. Since A4 × ∆(ΘA) × ∆(ΘB) is compact by Assumption A.1, we need only show that
for every sequence (p(k)

B )k≥1 and (a(k), µ(k))k≥1 = (a(k)
AA, a

(k)
AB, a

(k)
BA, a

(k)
BB, µ

(k)
A , µ

(k)
B )k≥1 such that

for every k, (a(k), µ(k)) is an EZ with p = (1 − p
(k)
B , p

(k)
B ), p(k)

B → p∗
B, and (a(k), µ(k)) → (a∗, µ∗),

then (a∗, µ∗) is an EZ with p = (1 − p∗
B, p

∗
B).

We first show for all g, g′ ∈ {A,B}, a∗
g,g′ is optimal against a∗

g′ ,g
under the belief µ∗

g.

Assortativity does not matter here, since optimality applies within all type match-ups. By
Assumption A.2, Ug(ai, a−i;F ) is continuous, so by property of convergence in distribu-
tion, Ug(a(k)

g,g′ , a
(k)
g′ ,g

;µ(k)
g ) → Ug(a∗

g,g′ , a∗
g′ ,g

;µ∗
g). For any other âi ∈ A, Ug(âi, a(k)

g′ ,g
;µ(k)

g ) →
Ug(âi, a∗

g′ ,g
;µ∗

g) and for every k, Ug(a(k)
g,g′ , a

(k)
g′ ,g

;µ(k)
g ) ≥ Ug(âi, a(k)

g′ ,g
;µ(k)

g ). Therefore a∗
g,g′ best

responds to a∗
g′ ,g

under belief µ∗
g.

Next, we show parameters in the support of µ∗
g minimize weighted KL divergence for

group g. First consider the correspondence H : A4 × [0, 1] ⇒ Θg where H(a, pg) := Θ∗
g(a, λ+

(1 − λ)(pg)). Then H is upper hemicontinuous by Lemma A.1. Since H(a, pg) represents the
minimizers of a continuous function on a compact domain, it is non-empty and closed. By
Theorem 17.13 of Aliprantis and Border (2006), the correspondence H̃ : A4 × [0, 1] ⇒ ∆(Θg)
defined so that H̃(a, pg) := ∆(H(a, pg)) is also upper hemicontinuous. For every k, µ(k)

g ∈
H̃(a(k), p(k)

g ), and µ(k)
g → µ∗

g, a(k) → a∗, p(k)
g → p∗

g. Therefore, µ∗
g ∈ H̃(a∗, p∗

g), that is to say µ∗
g

is supported on the minimizers of weighted KL divergence.

C Learning Foundation of EZ and EZ-SU

We provide a unified foundation for EZ and EZ-SU as the steady state of a learning system.
This foundation considers a world where agents have prior beliefs over extended parameters
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in an extended model, as in Appendix 4. At the end of every match, each agent observes her
consequence and a noisy signal about the matched opponent’s strategy. We show that under
any asymptotically myopic policy, if behavior and beliefs converge, then the limit steady
state must be an EZ-SU when the noisy signals about opponent’s strategy are uninformative.
Sufficiently accurate signals about opponent’s play cause the steady states to be EZs, if the
extended models allow agents to make rich enough inferences about opponents’ strategies.
Finally, if the true situation is redrawn every T periods and the agents reset their beliefs over
extended parameters to their prior belief when the situation is redrawn, then their average
payoffs approach their fitness in the EZ or EZ-SU when T is large.

C.1 Regularity Assumptions

We make some regularity assumptions on the objective environments and on the extended
models ΘA,ΘB. These are similar to the regularity assumptions from Appendix B.

Suppose the strategy set A is finite. Suppose the marginals of the extended models
ΘA,ΘB on the dimension of fundamental uncertainty, denoted as ΘA,ΘB, are compact
and metrizable spaces. Endow ΘA and ΘB with the product metric. Suppose that every
(aA, aB, F ) ∈ ΘA ∪ ΘB is so that for every (ai, a−i) ∈ A2 and every situation G, whenever
f •(ai, a−i, G)(y) > 0, we also get f(ai, aA)(y) > 0 and f(ai, aB)(y) > 0, where f is the density
or probability mass function for F .

For each g, g′ ∈ {A,B}, define Kg,g′ : A2 × G × Θg → R by Kg,g′ (ai, a−i, G; (aA, aB, F )) =
DKL(F •(ai, a−i, G) ∥ F (ai, ag′ )). This is the KL divergence of the parameter (aA, aB, F ) ∈ Θg

in situation G based on the data generated from the strategy profile (ai, a−i). Suppose each
Kg,g′ is well defined and a continuous function of the extended parameter (aA, aB, F ).

For g ∈ {A,B}, F ∈ Θg, let Ug(ai, a−i;F ) be the expected payoffs of the strategy profile
(ai, a−i) for i when consequences are drawn according to F. Assume UA, UB are continuous.

Suppose for every extended model Θg and every (aA, aB, F ) ∈ Θg and ϵ > 0, there
exists an open neighborhood V ⊆ Θg of (aA, aB, F ), so that for every (âA, âB, F̂ ) ∈ V ,
1 − ϵ ≤ f(ai, aA)(y)/f̂(ai, âA)(y) ≤ 1 + ϵ and 1 − ϵ ≤ f(ai, aB)(y)/f̂(ai, âB)(y) ≤ 1 + ϵ for all
ai ∈ A, y ∈ Y. Also suppose there is some M > 0 so that ln(f(ai, aA)(y)) and ln(f(ai, aB)(y))
are bounded in [−M,M ] for all (aA, aB, F ) ∈ Θg, ai, a−i ∈ A, y ∈ Y.
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C.2 Learning Environment

We first consider an environment with only one true situation, |G| = 1. Time is discrete
and infinite, t = 0, 1, 2, ... A unit mass of agents, i ∈ [0, 1], enter the society at time 0. A
pA ∈ (0, 1) measure of them are assigned to model A and the rest are assigned to model B.
Each agent born into model g starts with the same full support prior over the extended model,
µ(0)
g ∈ ∆(Θg), and believes there is some (aA, aB, F ) ∈ Θg so that every group g opponent

always plays ag and the consequences are always generated by F .
In each period t, agents are matched up partially assortatively to play the stage game.

Assortativity is λ ∈ (0, 1). Each person in group g has λ+ (1 − λ)pg chance of matching with
someone from group g, and matches with someone from group −g with the complementary
chance. Each agent i observes their opponent’s group membership and chooses a strategy
a

(t)
i ∈ A. At the end of the match, the agent observes own consequence y(t)

i and a signal
x

(t)
i ∈ A about the opponent’s play, where x(t)

i equals the matched opponent’s strategy a−i with
probability τ ∈ [0, 1), and it is uniformly random on A with the complementary probability.
To give a foundation for a EZ-SU, we consider τ = 0, so the signal xi is uninformative. To
give a foundation for EZ, we consider τ close to 1.

Thus, the space of histories from one period is {A,B} × A × Y × A, with typical element
(g(t)
i , a

(t)
i , y

(t)
i , x

(t)
i ). It records the group membership of i’s opponent g(t)

i , i’s strategy a
(t)
i ,,

i’s consequence y(t)
i , and i’s ex-post signal about the matched opponent’s play, x(t)

i . Let H
denote the space of all finite-length histories.

Given the assumption on the two models, there is a well-defined Bayesian belief operator
for each model g, µg : H → ∆(Θg), mapping every finite-length history into a belief over
extended parameters in Θg, starting with the prior µ(0)

g .

We also take as exogenously given policy functions for choosing strategies after each
history. That is, ag,g′ : H → A for every g, g

′ ∈ {A,B} gives the strategy that a group g

agent uses against a group g
′ opponent after every history. Assume these policy functions

are asymptotically myopic.

Assumption A.6. For every ϵ > 0, there exists N so that for any history h containing
at least N matches against opponents of each group, ag,g′ (h) is an ϵ-best response to the
Bayesian belief µg(h).

From the perspective of each agent i in group g, i’s play against groups A and B,
as well as i’s belief over Θg, is a stochastic process (ã(t)

iA, ã
(t)
iB, µ̃

(t)
i )t≥0 valued in A × A ×
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∆(Θg). The randomness is over the groups of opponents matched with in different periods,
the strategies they play, and the random consequences and ex-post signals drawn at the
end of the matches. Since there is a continuum of agents, the distribution over histories
within each population in each period is deterministic. As such, there is a deterministic
sequence (α(t)

AA, α
(t)
AB, α

(t)
BA, α

(t)
BA, ν

(t)
A , ν

(t)
B ) ∈ ∆(A)4 × ∆(∆(ΘA)) × ∆(∆(ΘB)) that describes

the distributions of play and beliefs that prevail in the two sub-populations in every period t.

C.3 Steady State Limits are EZ-SUs and EZs

We state and prove the learning foundation of EZ-SU and EZ. For (α(t))t a sequence valued
in ∆(A) and a∗ ∈ A, α(t) → a∗ means Eâ∼α(t) ∥ â− a∗ ∥→ 0 as t → ∞. For (ν(t))t a sequence
valued in ∆(∆(Θg)) and µ∗ ∈ ∆(Θg), ν(t) → µ∗ means Eµ̂∼ν(t) ∥ µ̂− µ∗ ∥→ 0 as t → ∞.

Proposition A.3. Suppose the regularity assumptions in Appendix C.1 hold, and suppose
Assumption A.6 holds.

Suppose τ = 0. Suppose there exists (a∗
AA, a

∗
AB, a

∗
BA, a

∗
BB, µ

∗
A, µ

∗
B) ∈ A4 × ∆(ΘA) × ∆(ΘB)

so that (α(t)
AA, α

(t)
AB, α

(t)
BA, α

(t)
BA, ν

(t)
A , ν

(t)
B ) → (a∗

AA, a
∗
AB, a

∗
BA, a

∗
BB, µ

∗
A, µ

∗
B) and for each agent i in

group g, almost surely (ã(t)
iA, ã

(t)
iB, µ̃

(t)
i ) → (a∗

gA, a
∗
gB, µ

∗
g). Then, (a∗

AA, a
∗
AB, a

∗
BA, a

∗
BB, µ

∗
A, µ

∗
B) is

an EZ-SU.
Suppose for each g, the extended model Θg = A2 × Θg for some model Θg – that is,

each group can make any inference about opponents’ strategies. There exists some τ < 1
so that for every τ ∈ (τ , 1) and (a∗

AA, a
∗
AB, a

∗
BA, a

∗
BB, µ

∗
A, µ

∗
B) satisfying the above conditions,

we have that µ∗
A puts probability 1 on (a∗

AA, a
∗
AB), µ∗

B puts probability 1 on (a∗
BA, a

∗
BB), and

(a∗
AA, a

∗
AB, a

∗
BA, a

∗
BB, µ

∗
A|ΘA

, µ∗
B|ΘB

) is an EZ, where µ∗
g|Θg is the marginal of the belief µ∗

g on
the model Θg.

Proof. We first consider the case of τ = 0, so the uninformative ex-post signals may be
ignored. For µ a belief and g ∈ {A,B}, let uµ(ai; g) represent subjective expected payoff
from playing ai against group g. Suppose a∗

AA /∈ argmaxâ∈Au
µ∗

A(â;A) (the other cases are
analogous). By the continuity assumptions on UA (which is also bounded because ΘA is
bounded), there are some ϵ1, ϵ2 > 0 so that whenever µi ∈ ∆(ΘA) with ∥ µi − µ∗

A ∥< ϵ1, we
also have uµi(a∗

AA;A) < maxâ∈A u
µi(â;A) − ϵ2. By the definition of asymptotically empirical

best responses, find N so that aA,A(h) must be a myopic ϵ2-best response when there are
at least N periods of matches against A and B. Agent i has a strictly positive chance to
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match with groups A and B in every period. So, at all except a null set of points in the
probability space, i’s history eventually records at least N periods of play by groups A and
B. Also, by assumption, almost surely µ̃(t)

i → µ∗
A. This shows that by asymptotically myopic

best responses, almost surely ã(k)
iA ̸→ a∗

AA, a contradiction.
Now suppose some θ∗

A = (a∗
A, a

∗
B, f

∗) in the support of µ∗
A does not minimize the weighted

KL divergence in the definition of EZ-SU (the case of a parameter θ∗
B in the support of µ∗

B

not minimizing is similar). Then we have

θ∗
A /∈ argmin

θ̂∈ΘA

 (λ+ (1 − λ)pA) ·DKL(F •(a∗
AA, a

∗
AA) ∥ F̂ (a∗

AA, âA))
+(1 − λ)(1 − pA) ·DKL(F •(a∗

AB, a
∗
BA) ∥ F̂ (a∗

AB, âB))


where θ̂ = (âA, âB, F̂ ).

This is equivalent to:

θ∗
A /∈ argmax

θ̂∈ΘA

 (λ+ (1 − λ)pA) · Ey∼F •(a∗
AA,a

∗
AA) ln(f̂(a∗

AA, âA)(y))
+(1 − λ)(1 − pA) · Ey∼F •(a∗

AB ,a
∗
BA) ln(f̂(a∗

AB, âB)(y))


Let this objective, as a function of θ̂, be denotedWL(θ̂). There exists θoptA = (aoptA , aoptB , f opt) ∈

ΘA and δ, ϵ > 0 so that (1 − δ)WL(θoptA ) − 2δM − 3ϵ > (1 − δ)WL(θ∗
A). By assumption on the

primitives, find open neighborhoods V opt and V ∗ of θoptA , θ∗
A respectively, so that for all ai ∈ A,

g ∈ {A,B}, y ∈ Y, 1 − ϵ ≤ f opt(ai, aoptg )(y)/f̂(ai, âg)(y) ≤ 1 + ϵ, for all θ̂ = (âA, âB, f̂) ∈ V opt,
and also 1 − ϵ ≤ f ∗(ai, a∗

g)(y)/f̂(ai, âg)(y) ≤ 1 + ϵ for all θ̂ = (âA, âB, f̂) ∈ V ∗. Also, by
convergence of play in the populations, find T1 so that in all periods t ≥ T1, α

(t)
AA(a∗

AA) ≥ 1− δ

and α
(t)
BA(a∗

BA) ≥ 1 − δ.
For T2 ≥ T1, consider a probability space defined by Ω := ({A,B} × A2 × (Y)A2)∞ that

describes the randomness in an agent’s learning process starting with period T2 + 1. For a
point ω ∈ Ω and each period T2 + s, s ≥ 1, ωs = (g, a−i,A, a−i,B, (yai,a−i

)(ai,a−i)∈A2) specifies
the group g of the matched opponent, the play a−i,A, a−i,B of hypothetical opponents from
groups A and B, and the hypothetical consequence yai,a−i

that would be generated for every
pair of strategies (ai, a−i) played. As notation, let opp(ω, s), a−i,A(ω, s), a−i,B(ω, s), and
yai,a−i

(ω, s) denote the corresponding components of ωs. Define PT2 over this space in the
natural way. That is, it is independent across periods, and within each period, the density
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(or probability mass function if Y is finite) of ωs = (g, a−i,A, a−i,B, (yai,a−i
)(ai,a−i)∈A2) is

mg · α(T2+s)
AA (a−i,A)α(T2+s)

BA (a−i,B) ·
∏

(ai,a−i)∈A2

f •(ai, a−i)(yai,a−i
),

where mg is the probability of i from group A being matched up against an opponent of
group g, that is mA = (λ+ (1 − λ)pA), mB = (1 − λ)(1 − pA).

For θ = (aθA, aθB, F θ) ∈ ΘA with f θ the density of F θ, ω ∈ Ω, consider the process

ℓs(θ, ω) := 1
s

T2+s∑
t=T2+1

ln(f θ(a∗
AA, a

θ
opp(ω,t))(ya∗

AA,a−i,opp(ω,t)(ω,t)(ω, t)).

By choice of the neighborhood V ∗,

lim sup
s

sup
θA∈V ∗

ℓs(θA, ω) ≤ ϵ+ 1
s

T2+s∑
t=T2+1

ln(f ∗(a∗
AA, a

∗
opp(ω,t))(ya∗

AA,a−i,opp(ω,t)(ω,t)(ω, t))

≤ ϵ+ 1
s

T2+s∑
t=T2+1

1{a−i,opp(ω,t)(ω,t)=a∗
opp(ω,t),A

} · ln(f ∗(a∗
AA, a

∗
opp(ω,t))(ya∗

AA,a
∗
opp(ω,t),A

(ω, t))
(1 − 1{a−i,opp(ω,t)(ω,t)=a∗

opp(ω,t),A
}) ·M.

Since T2 ≥ T1, in every period t, PT2(a−i,opp(ω,t)(ω, t) = a∗
opp(ω,t),A) ≥ 1−δ. Let (ξk)k≥1 a related

stochastic process: it is i.i.d. such that each ξk has δ chance to be equal to M, (1−δ)mA chance
to be distributed according to ln(f ∗(a∗

AA, a
∗
A)(y)) where y ∼ f •(a∗

AA, a
∗
AA), and (1 − δ)mB

chance to be distributed according to ln(f ∗(a∗
AB, a

∗
B)(y)) where y ∼ f •(a∗

AB, a
∗
BA). By law of

large numbers, 1
s

∑s
k=1 ξk converges almost surely to δM+(1−δ)WL(θ∗

A). By this comparison,
lim sups supθA∈V ∗ ℓs(θA, ω) ≤ ϵ+δM+(1−δ)WL(θ∗

A) PT2-almost surely. By a similar argument,
lim infs infθA∈V opt ℓs(θA, ω) ≥ −ϵ− δM + (1 − δ)WL(θoptA ) PT2-almost surely.

Along any ω where we have both lim sups supθA∈V ∗ ℓs(θA, ω) ≤ ϵ+ δM + (1 − δ)WL(θ∗
A)

and lim infs infθA∈V opt ℓs(θA, ω) ≥ −ϵ − δM + (1 − δ)WL(θoptA ), if ω also leads to i always
playing a∗

AA against group A and a∗
AB against group B in all periods starting with T2 + 1,

then the posterior belief assigns to V ∗ must tend to 0, hence µ̃(t)
i ̸→ µ∗

A. Starting from any
length T2 history h, there exists a subset Ω̂h ⊆ Ω that leads to i not playing the EZ-SU
strategy in at least one period starting with T2 + 1. So conditional on h, the probability
of µ̃(t)

i → µ∗
A is no larger than 1 − PT2(Ω̂h). The unconditional probability is therefore no

larger than Eh[1 − PT2(Ω̂h)], where Eh is taken with respect to the distribution of period T2

histories for i. But this term is also the probability of i playing non-EZ-SU action at least once
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starting with period T2. Since there are finitely many actions and (ã(t)
iA, ã

(t)
iB) → (a∗

AA, a
∗
AB)

almost surely, Eh[1 − PT2(Ω̂h)] tends to 0 as T2 → ∞. We have a contradiction as this shows
µ̃

(t)
i ̸→ µ∗

A with probability 1.
Now consider the foundation for EZs. Suppose Let K̄ < ∞ be an upper bound on

Kg,g′ (ai, a−i; (aA, aB, F )) across all g, g′ ∈ {A,B}, ai, a−i ∈ A, (aA, aB, F ) ∈ Θg. Here K̄ is
finite because A is finite and Kg,g′ is continuous in the extended parameter, which is from a
compact domain. Let FX

τ (a−i) ∈ ∆(A) represent the distribution of ex-post signals given
precision τ, when opponent plays a−i ∈ A. It is clear that there exists some τ < 1 so that for
any a−i ̸= a

′
−i, τ ∈ (τ , 1), we get min(mA,mB) · DKL(FX

τ (a−i) ∥ FX
τ (a′

−i)) > K̄. Therefore,
given any (a∗

AA, a
∗
AB, a

∗
BA) ∈ A3, the solution to

min
θ̂∈ΘA

 (λ+ (1 − λ)pA) · [DKL(F •(a∗
AA, a

∗
AA) ∥ F̂ (a∗

AA, âA)) +DKL(FX
τ (a∗

AA) ∥ FX
τ (âA))]

+(1 − λ)(1 − pA) · [DKL(F •(a∗
AB, a

∗
BA) ∥ F̂ (a∗

AB, âB)) +DKL(FX
τ (a∗

BA) ∥ FX
τ (âB)]


must satisfy âA = a∗

AA, âB = a∗
BA, because (a∗

AA, a
∗
BA, F ) for any F ∈ ΘA has a KL divergence

no larger than K̄. On the other hand, any (âA, âB, F̂ ) with either âA ̸= a∗
AA or âB ̸= a∗

BA has
KL divergence strictly larger than K̄ by the choice of τ . The rest of the argument is similar
to the case of EZ-SU.

C.4 Multiple Situations

Now suppose there are multiple situations G ∈ G and a distribution q ∈ ∆(G), with G finite.
At the start of period t = 1, Nature draws a situation G(1) from G according to q, and
consequences are generated according to F •(·, ·, G(1)) until period t = T + 1. In period T + 1,
Nature again draws a situation G(2) from G according to q, and consequences are generated
according to F •(·, ·, G(2)) until period t = 2T + 1, and so forth. Agents start with a prior over
their group’s extended model, µ(0)

g ∈ ∆(Θg). In periods T + 1, 2T + 1, ... agents reset their
belief to µ(0)

g , and their belief in each period over the extended parameters in their extended
model only use histories since the last reset. This belief corresponds to agents thinking that
the data-generating process is redrawn according to µ(0)

g every T periods.
Suppose τ = 0 and suppose for every G ∈ G, the hypotheses of Proposition A.3 hold in a so-

ciety whereG is the only true situation. Denote (a∗
AA(G), a∗

AB(G), a∗
BA(G), a∗

BB(G), µ∗
A(G), µ∗

B(G))
as the limit of the agents’ behavior and beliefs with situation G. Then it is straightforward to
see that in a society with the situation redrawn every T periods, the expected undiscounted
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average payoff of an agent in group g approaches the fitness of g in the EZ-SU characterized
by the behavior and beliefs (a∗

AA(G), a∗
AB(G), a∗

BA(G), a∗
BB(G), µ∗

A(G), µ∗
B(G))G∈G with the

distribution q over situations, as T → ∞. This provides a foundation for fitness in EZ-SU as
the agents’ objective payoffs when the true situation changes sufficiently slowly (a similar
foundation applies for the fitness in EZ.)
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