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Abstract

We study misperceptions of private-signal correlation when agents repeatedly match
up to play an incomplete-information Cournot duopoly game. We find that a misper-
ception’s viability can depend on whether agents hold flexible or dogmatically correct
beliefs about price elasticity. If agents have flexible beliefs and learn elasticity by ob-
serving prices, correlation misperceptions indirectly distort behavior through elasticity
misinference. If agents know the true elasticity, this learning channel is eliminated.
Correlation misperceptions have opposite direct and indirect effects on behavior, so the
presence of elasticity inference can reverse an error’s viability.
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1 Introduction

In strategic situations where players face uncertainty over the state of nature, agents’ behavior
can depend on both their beliefs about the state (i.e., first-order beliefs) and their beliefs
about other players’ information (i.e., higher-order beliefs). But, significant evidence suggests
economic actors often find it difficult to form accurate higher-order beliefs or detect systematic
biases in them. This paper investigates mistaken higher-order beliefs from an evolutionary
perspective, asking which errors might confer an advantage and when.

Our main message is that whether a given misperception in higher-order beliefs improves
or harms payoffs can depend on whether other, persistent parameters of the game are
known or inferred. A higher-order misperception can influence the agent’s conjecture of
opponent behavior, since the opponent’s action conditions on their information. This distorted
conjecture can directly distort the agent’s action. But more subtly, when the agent does not
know the true values of the persistent game parameters and must infer them through repeated
play, the same mispredictions about opponents’ behavior cause the agent to misinterpret
game outcomes. This misinference induces distorted beliefs about the game parameters,
possibly letting the agent commit to strategically beneficial behavior. So, in addition to its
direct effect, higher-order misperceptions can distort behavior indirectly through this learning
channel. Given that errors can have opposite direct and indirect effects on behavior, an agent’s
knowledge or ignorance about the persistent parameters (and thus whether the learning
channel is present) can determine whether the error facilitates such beneficial commitments.

1.1 Summary of the Setup and Main Results

We illustrate this idea in the context of a linear-quadratic-normal (LQN) Cournot duopoly
game of incomplete information, similar to Vives (1988).1 The state is the intercept of the
demand curve (i.e., demand shock), drawn i.i.d. from a normal distribution each time the
game is played, with players receiving possibly correlated signals before choosing quantities.
The key persistent game parameter is the slope of the demand curve (i.e., price elasticity),
which players may or may not know. Setups within the LQN family have received significant
attention in part because they admit tractable comparative statics with respect to players’
information (illustrated in Bergemann and Morris (2013), as well as Miyashita and Ui (2023);

1Angeletos and Pavan (2007) extend this model to more general environments. We explain how our results
generalize in Section 5.3.
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Bergemann, Heumann, and Morris (2017)). Here, we use this setup to study misperceptions
of others’ information.

Society consists of residents and entrants who repeatedly pair up to play the LQN game.
Price elasticity is a structural parameter of the market that remains fixed across games, but
idiosyncratic daily demand shocks cause the demand intercept to be drawn i.i.d. across games.
Residents correctly know how the demand signals of the two participants in each game are
correlated, whereas entrants may misperceive this correlation in information. We show that if
agents correctly know the persistent price elasticity, then assortative matching (i.e., entrants’
welfare is determined by how they do when playing against each other) favors entrants who
overestimate correlation in different players’ signals. On the other hand, uniform matching
(i.e., entrants’ welfare is determined by how they do when playing against residents) favors
entrants who underestimate said correlation. However, the situation is exactly reversed when
agents do not know price elasticity and infer this parameter from game outcomes. That is,
sometimes erroneous higher-order beliefs only benefit agents who are uncertain about the
game’s persistent parameters.

To see the intuition behind this finding, consider an agent who misperceives signals to be
excessively correlated — an error we refer to as projection bias. We show that the welfare
implications of projection bias with uniform matching depend on whether the bias induces
more aggressive strategies in equilibrium — that is, strategies that respond more to changes
in private information about demand. Using a more aggressive strategy acts as a commitment
that induces the opponent to behave less aggressively, which is beneficial as this game features
strategic substitutes. Thus, we examine whether projection bias increases the aggressiveness
of subjective best responses.

On the one hand, the direct effect of projection bias makes agents act less aggressively.
When an agent has a private signal that suggests high market demand, they overestimate the
similarity of their opponent’s information and thus exaggerate how much the other player
will increase their production level. This force limits how much the agent wishes to increase
production, since the two competitors’ quantity choices are strategic substitutes. The bias
thus harms the agent’s profits when they know price elasticity.

On the other hand, the indirect effect of projection bias through the learning channel acts
in the opposite direction. Suppose this agent infers elasticity from prices. Then, projection
bias causes the agent to underestimate price elasticity. This is because the agent’s bias leads
them to overestimate the correlation between their own signal realization and their opponent’s
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production quantity in each game. After a high private signal, the market price remains
higher than the agent expects, which they rationalize by inferring a low price elasticity.
Underinferring price elasticity increases the aggressiveness of the agent’s best response, as
they underestimate how quickly the price decreases when they produce more. Thus, the
learning channel influences the aggressiveness of the strategy in precisely the opposite way
compared to the misperception of the signal correlation.

While this observation may suggest that the overall impact of correlation misperception
is ambiguous, we show that the indirect effect is in fact stronger than the direct effect.
Intuitively, this is because elasticity influences strategies much more than perceived signal
correlation. However, the indirect effect is present only when agents are initially uncertain
about price elasticity. Putting everything together, we conclude that projection bias can
only invade a rational society when the entrants draw inferences about price elasticity from
market prices, not when they already know price elasticity with certainty. (Our results for
assortative matching are essentially the inverse of these findings, as assortative matching
favors less aggressive strategies rather than more aggressive ones.)

1.2 Related Literature

The question of whether profit maximization requires firms to behave (at least as-if) rationally
has been of interest to economists since at least Friedman (1953)’s market-selection hypothesis.
The subsequent literature points out that while misperceptions can only lower payoffs in
decision problems, the same need not be true in strategic settings as a firm’s performance
also depends on how its competitors react to it. To study the consequences of the market
selection pressures on errors in higher-order beliefs, our work applies stability concepts from
the literature on the indirect evolutionary approach (surveyed in Alger and Weibull (2019);
Robson and Samuelson (2011)) to these biases.

Typically, the indirect evolutionary approach assumes agents in a society are endowed with
different subjective preferences over game outcomes. If a “new preference” leads to higher
objective payoffs in equilibrium than an “existing preference” when the latter is dominant in
the society, then we say the former has an evolutionary advantage and can invade the latter.
In our application, a higher-order misperception is equivalent to a subjective preference only
if the agent knows the persistent game parameters. If the agent is uncertain about these
parameters and infers them from game outcomes, then the same misperception can lead
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to different beliefs about these parameters when the environment varies, as highlighted in
our companion paper He and Libgober (2024). A recent literature on misspecified Bayesian
learning (Esponda and Pouzo (2016); Frick, Iijima, and Ishii (2024); Heidhues, Koszegi, and
Strack (2018), among others) studies the implications of mislearning persistent parameters
of the environment on behavior and welfare. Our contribution is to study the equilibrium
consequences of misperceiving others’ information within a seminal game, and to ask how the
answer depends on agents’ uncertainty about the persistent game parameters. Our interest
in matching assortativity is borrowed from Alger and Weibull (2013), who study the effect of
assortativity on the selection of preferences and find that more assortativity selects for less
selfish behavior. Alger and Weibull (2019) discuss interest in this aspect of the matching
process in depth, as assortativity is naturally generated by various population structures.

One theme in this literature is that rational payoff maximization cannot be evolutionarily
suboptimal unless agents’ preferences or strategies are at least partially observable by others.
Dekel, Ely, and Yilankaya (2007) characterize stable preferences in two-by-two games under
the assumption of observable preferences, while also showing that rational preferences are
favored when preferences are unobservable. Heifetz, Shannon, and Spiegel (2007) show that
distortions are evolutionarily beneficial within a general framework that allows richer action
spaces, again under the assumption of observable preferences (although their conclusions may
remain even when this assumption is relaxed). Our framework analogously assumes that
agents’ perceptions of signal correlation are observable, which provides scope for departures
from rationality (as in these other works). Our results also rely on the observability of
strategies; we discuss the implications of relaxing this assumption in Section 5.1.

Much of the past work using the evolutionary approach focuses on stage games with
complete information. By contrast, we study a stage game with incomplete information since
we are interested in biases that involve misperceptions of others’ information. This presents
additional challenges for characterizing equilibrium, since the game’s strategy space becomes
much richer when players can condition their actions on their private signals. Other papers in
economic theory have studied the implications of information projection or the related bias of
taste projection (Gagnon-Bartsch, Pagnozzi, and Rosato (2021); Gagnon-Bartsch and Rosato
(2024); Madarász (2012)). But, we pinpoint a novel mechanism where a misperception of
correlation in information grants a strategic advantage by causing the agent to mislearn
some persistent parameter of the game through repeated play, and thus commit to a more
beneficial strategy.
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The idea that firms may be misspecified relates to a line of work studying pricing
algorithms. These papers usually consider an environment where each firm uses a learning
algorithm to estimate its profit function. A common theme is that if the learning algorithm
is misspecified (as it often must be given the complexity of the market environment), then
the prices algorithms converge to can end up being excessively collusive. For example,
Hansen, Misra, and Pai (2021); Asker, Fershtman, and Pakes (2023); Calvano, Calzolari,
Denicoló, and Pastorello (2020) use numerical simulations to study reinforcement-learning
algorithms that assume the firm is facing a time-stationary competitive environment, when in
reality they face competition from other learning algorithms that adjust their behavior over
time. In our setting, we can interpret an agent’s misperceptions of signal correlation as a
misspecification encoded in the agent’s pricing algorithm, and our results similarly show that
Bayesian algorithms that estimate market price elasticity under misspecifications can end
up behaving too cooperatively or too aggressively (depending on the error). Also related to
our work is Berman and Heller (2024), who consider firms that choose from a broad class of
possibly non-Bayesian learning algorithms. By comparison, we are closer to the misspecified
Bayesian learning literature as we restrict attention to only agents/algorithms that draw
Bayesian inferences given their misperceptions.

2 Framework

Following the indirect evolutionary approach and our companion paper He and Libgober
(2024), we study an environment where a continuum of agents are matched up in pairs each
period to play a two-player stage game.

2.1 Stage Game and Information Structure

We begin by describing the stage game, a simultaneous-move game with incomplete informa-
tion. There is a demand state ω ∼ N (0, σ2

ω), where N (µ, σ2) is the normal distribution with
mean µ and variance σ2. Firm i observes a private signal si = ω + ϵi, and then chooses a
quantity qi ∈ R. The resulting market price is P = ω−r• · 1

2(q1+q2)+ζ, where ζ ∼ N (0, (σ•
ζ )2)

is a price shock independent of other random variables. Throughout the paper, we use super-
script • to denote the true parameters, distinguishing them from the subjectively believed
parameters which we describe below. The firm pays a cost 1

2q
2
i when it chooses quantity qi,
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which leads to a profit of qiP − 1
2q

2
i if the market price is P .

As in many other LQN oligopoly models, market prices and quantity choices may be
positive or negative. To interpret, when P > 0, the market pays for each unit of good
supplied, and the market price decreases in total supply. When P < 0, the market pays for
disposal. The cost 1

2q
2
i represents either a convex production cost or a convex disposal cost,

depending on the sign of qi.
We allow players’ signals in a given stage game to be correlated conditional on ω. We

study misperceptions of this correlation. Recalling that si = ω + ϵi, we take:

ϵi = κ•√
(κ•)2 + (1 − κ•)2

z + 1 − κ•√
(κ•)2 + (1 − κ•)2

ηi,

where ηi ∼ N (0, σ2
ϵ ) is the idiosyncratic component generated i.i.d. across players and

z ∼ N (0, σ2
ϵ ) is the common component. Under this parameterization, κ• reflects the

similarity between the players’ private information. In particular, higher κ• leads to an
information structure with higher conditional correlation. Indeed, when κ• = 0, si and s−i

are conditionally uncorrelated given ω. On the other hand, when κ• = 1, we always have
si = s−i (i.e., perfect correlation between signals). Our functional form for ϵi ensures Var(si)
is constant in κ•, so that the distribution of ω given si does not vary with κ•.

As mentioned, we embed this stage game within a larger framework to discuss the selection
of misspecified models. This elaboration takes the persistent parameters of the stage game to
be σ2

ω > 0 (variance of demand state), r• > 0 (a measure of the elasticity of market price
with respect to quantity supplied), (σ•

ζ )2 > 0 (variance of price shock), and κ• ∈ [0, 1] (a
measure of signal correlation). By contrast, each time the stage game is played, ω, z, ηi and ζ
are independently drawn from their respective distributions.

2.2 Models, Inference, and Strategies

The stage game is common knowledge except for the persistent parameters κ•, r•, and
(σ•

ζ )2. Agents interpret their environment through their models of the world. A model can
have two kinds of parameters: free parameters are estimated using game outcomes, while
fixed parameters are dogmatically given by the model and not subject to inference. Signal
correlation is a fixed parameter in every model, so different models can encode different
dogmatic beliefs about that aspect of the stage game. We consider both flexible models where
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signal correlation κ̃ is a fixed parameter but price elasticity r̃ and price shock variance σ̃2
ζ are

free parameters,2 as well as dogmatic models where κ̃, r̃, σ̃2
ζ are all fixed parameters.

Our interest will be in studying misperceptions of signal correlation. We distinguish
between the two possible directions of this misperception:

Definition 1. Let κ̃ be a player’s perceived κ. A player exhibits correlation neglect if κ̃ < κ•.
A player exhibits projection bias if κ̃ > κ•.

Correlation neglect agents underestimate the correlation between players’ signals in the stage
game, whereas projection bias agents exaggerate this correlation. We are agnostic about the
origin of these misspecifications, except to say that in many contexts they do seem to arise,
as highlighted in our discussion in Section 1.2. However, our interest in this paper is whether
misspecifications of this form can invade a rational society.

We now describe inference for flexible models. A consequence is a triple (si, qi, P ) that
contains i’s signal, i’s quantity choice, and the realized market price. A strategy for i is
a quantity choice as a function of i’s signal realization, Qi(si). Let Y denote the set of
all consequences, and let S denote the space of strategies. For each (κ, r, σ2

ζ ), we define
Fκ,r,σ2

ζ
: S × S → ∆(Y) to be the mapping between strategy profiles and the distribution over

i’s consequences in a stage game with parameters (κ, r, σ2
ζ ). The following definition captures

our notion of free-parameter estimation. This inference is performed as a function of a given
stage-game strategy profile:

Definition 2. Let F •(Qi, Q−i) denote the objective distribution over i’s consequences given
strategy profile Qi, Q−i. We say that inference (r̃, σ̃2

ζ ) is a self-confirming inference given
strategy profile Qi, Q−i and correlation κ if F •(Qi, Q−i) = Fκ,r̃,σ̃2

ζ
(Qi, Q−i).

Self-confirming inferences are not falsified by the distribution of consequences that a player
sees when they perceive correlation κ and repeatedly play the stage game using strategy Qi

against different opponents who all use the strategy Q−i. Self-confirming inferences need not
exist in general, in which case a goodness-of-fit criterion would be necessary for inferences to
be well-defined. Esponda and Pouzo (2016) motivate KL-divergence as a natural criterion for

2While a flexible model allows agents to infer both r and σ2
ζ , their misinference about r drives the results.

Since each player’s profit is linear in the market price, belief about the variance of the idiosyncratic price
shock does not change their expected payoffs or behavior. The parameter σ2

ζ absorbs changes in the variance
of market price, creating significant tractability.
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misspecified Bayesian agents. However, to avoid complications, our analysis below will focus
on values of the true parameters such that self-confirming inferences exist.

Next, we present a partial equilibrium notion where both players choose strategies that
maximize profit given their beliefs about the persistent parameters, and said beliefs for some
player i are either the fixed parameters κ̃, r̃, σ̃2

ζ (if i has a dogmatic model) or fixed parameter
κ̃ together with the self-confirming inferences (if i has a flexible model). The reason why
we do not require −i to also derive beliefs from the same interaction is that some of our
analysis concerns environments where −i’s beliefs are primarily shaped by the consequences
they observe in other matches—in particular, when i is part of a negligible subpopulation.

Definition 3. A strategy profile Qi, Q−i and belief profile (κ̃i, r̃i, σ̃2
ζ,i), (κ̃−i, r̃−i, σ̃

2
ζ,−i) are a

linear partial equilibrium if

• For each player k, Qk(sk) = αksk for some αk ≥ 0.

• For each player k, Qk is an interim-stage best response against the opponent’s strategy
given belief (κ̃k, r̃k, σ̃2

ζ,k).

• For the first player i, κ̃i is the fixed parameter given by i’s model, and (r̃i, σ̃2
ζ,i) are

either the fixed parameters given by i’s dogmatic model or i’s self-confirming inference
given Qi, Q−i, and κ̃i (when i has a flexible model).

This definition reflects partial equilibrium since we only restrict the inferences of the first
player and not the second player. Our focus on linear strategies follows other work studying
LQN games. Since the best response (among the family of all strategies) to any linear strategy
is linear for any belief about the correlation parameter and price elasticity (shown in Lemma
2), we focus on equilibria where everyone uses linear strategies. We sometimes refer to the
linear strategy si 7→ αisi simply as αi.

2.3 Stability and Invasion

Our analysis will compare the entrant model, which is used by an infinitesimally small group
of entrants in the population, with the resident model, which is used by the remaining group
called the residents. We will consider two particular interaction structures.3 In uniform

3Appendix B considers a more general formulation which includes these two interaction structures as
extreme cases.
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matching, each agent is matched with an opponent drawn uniformly at random from the
entire population, with agents observing their opponent’s model. So, agents are only matched
against the entrant group with infinitesimal probability. In assortative matching, agents are
always matched within the group that uses the same model.4

In what follows, we use the subscript R to refer to the resident and the subscript E to
refer to the entrant. For example, κR denotes the resident’s perceived correlation parameter,
and κE denotes that of the entrant. We let αg→g′ denote the strategy that a group g agent
uses when matched against someone from group g′. For strategies αg, α−g in the stage game,
let U•(αg, α−g) be the objective expected utility of playing strategy αg against α−g. We refer
to the objective expected utility of agents who use a model as that model’s fitness.

Definition 4. With uniform matching, a linear equilibrium consists of strategies αR→R, αR→E, αE→R

and beliefs (κ̃R, r̃R, σ̃2
ζ,R), (κ̃E, r̃E, σ̃2

ζ,E) such that:

• αR→R, αR→R, (κ̃R, r̃R, σ̃2
ζ,R), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium,

• αE→R, αR→E, (κ̃E, r̃E, σ̃2
ζ,E), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium.

We say κR is resistant to invasion from κE with uniform matching if U•(αR→R, αR→R) ≥
U•(αE→R, αR→E) in every linear equilibrium, and we say κR is susceptible to invasion with
uniform matching if U•(αR→R, αR→R) < U•(αE→R, αR→E) in every linear equilibrium.

With assortative matching, a linear equilibrium consists of strategies αR→R, αE→E and
beliefs (κ̃R, r̃R, σ̃2

ζ,R), (κ̃E, r̃E, σ̃2
ζ,E) such that:

• αR→R, αR→R, (κ̃R, r̃R, σ̃2
ζ,R), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium,

• αE→E, αE→E, (κ̃E, r̃E, σ̃2
ζ,E), (κ̃E, r̃E, σ̃2

ζ,E) are a linear partial equilibrium.

We say κR is resistant to invasion from κE with assortative matching if U•(αR→R, αR→R) ≥
U•(αE→E, αE→E) in every linear equilibrium, and we say κR is susceptible to invasion with
assortative matching if U•(αR→R, αR→R) < U•(αE→E, αE→E) in every linear equilibrium.

This definition embeds the idea that agents with flexible models correctly think that the
values of the persistent game parameters do not change depending on the group membership

4Our assumption that entrants form an infinitesimally small group, as in He and Libgober (2024), is made
to avoid technical complications. Appendix B explains in detail how to extend our baseline framework to
accommodate the possibility that the entrants forms a very small but positive-mass group. We note that this
modification does not meaningfully change any of our results.
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of the opponent. In particular, in an environment with uniform matching and with residents
who have flexible models, the residents’ beliefs about the free parameters (r̃R, σ̃2

ζ,R) when
playing against entrants are estimated using the consequences in their matches against other
residents. This feature arises because these residents use all their available data to estimate
the persistent game parameters, and matches against entrants comprise an infinitesimally
small portion of their data.

2.4 Discussion of the Framework

In our framework, each model is a parametric class of data-generating processes. Misspecified
models are often used in the misspecified learning literature to represent and study behavioral
biases – in our case, errors in beliefs about signal correlation in the stage game. Our
subsequent results will compare the payoff implications of different models with different
perceptions of signal correlation, and sometimes focus on comparing entrant models that are
“close” to the resident models in that they only differ slightly in this perception. This is in line
with some of the recent work on misspecified learning (e.g., Fudenberg and Lanzani (2023))
but complementary to other work on preference evolution that instead focuses on analyzing
stability against the universe of all possible subjective preferences, typically in 2-by-2 games.

We find it worthwhile to study errors in higher-order beliefs both because these biases
have received significant attention recently in the behavioral literature (e.g., Gagnon-Bartsch
et al. (2021); Gagnon-Bartsch and Rosato (2024); Madarász (2012)) and because they are
likely harder to detect than errors in first-order beliefs and thus more likely to emerge in
the first place. We formalize one version of the claim that higher-order errors are “harder
to detect” in Section 5.2.2. We show that in our setting, the higher-order errors we study
cause no loss in profit and no misinference of the persistent parameters when agents act as
monopolists. By contrast, first-order errors in beliefs about the slope or intercept of the
demand curve lead to losses when agents are monopolists.

As is typical in the indirect evolutionary approach literature, our solution concept of
linear equilibrium assumes players know the strategies used by different groups of agents in
equilibrium.5 In our setting, we could justify such an assumption by imagining that agents
sample a large number of others from each of the resident and entrant populations and observe

5Even papers that consider imperfect observability of other’s types assume that agents correctly know the
equilibrium mapping from types to strategies (Dekel, Ely, and Yilankaya, 2007).
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their signals and quantities, thus learning how signals map into quantity choices in each
population. Our results on the selection of biases depend critically on this assumption. Section
5.1 shows that if the misspecified entrants can additionally hold a dogmatic misperception of
others’ strategies, then every misperception of signal correlation is equally viable: they can
all lead to the Stackelberg payoff6 in the stage game.

Finally, implicit in our definition of resistance and susceptibility to invasion is the idea
that agents interact frequently enough as to settle into a linear equilibrium, and that the
payoffs in the linear equilibrium determine the viability of biases. This is in line with the
existing work on the indirect evolutionary approach, which usually uses equilibrium payoffs
to evaluate the long-run fitness of different types (see, for instance, Dekel et al. (2007); Alger
and Weibull (2019)). A typical justification for equilibrium play is based on the idea that
play settles on equilibrium more quickly than the timescale of evolution (e.g., footnote 10 of
Dekel et al. (2007)).

3 Subjective Best Responses and Self-Confirming In-
ferences

This section presents results characterizing best responses and self-confirming inferences.
These preliminary lemmas enable an explicit description of equilibrium outcomes which we
will subsequently apply to discuss the evolutionary selection of models. Our first result shows
that when i sees private signal si, their mean posterior beliefs about the state and about
opponent’s signal are linear functions of si.

Lemma 1. There exists a strictly increasing function ψ(κ), with ψ(0) > 0 and ψ(1) = 1, so
that:

Eκ[s−i | si] = ψ(κ) · si, for all si ∈ R and κ ∈ [0, 1].

In addition, there exists a strictly positive constant γ > 0 so that

Eκ[ω | si] = γ · si, for all si ∈ R, κ ∈ [0, 1].

This result uses the tractability of the LQN framework. The coefficient γ that characterizes
6The Stackelberg payoffs corresponds to the player choosing a linear strategy maximizing their payoff,

subject to the constraint that the opponent plays a best reply to the strategy.
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an agent’s inference about the state does not depend on their perception of κ. But higher κ
implies the agent infers more about the opponent’s signal from their signal. In other words,
a misperception of κ only distorts the agent’s higher-order belief about the opponent’s signal
realization (and hence, the opponent’s belief), but does not affect the agent’s first-order belief
about the state ω.

The linearity of E[ω | si] and E[s−i | si] in si provided by Lemma 1 gives us an explicit
characterization of best responses in the stage game, given beliefs about the κ and r parameters.
Specifically, Lemma 1 implies that the expected price given si is a linear function of si when
the opponent follows a linear strategy. Our next lemma uses this fact to express player i’s
expected payoff as a quadratic function of αi. In what follows, we let Ui(αi, α−i;κ, r) denote
the subjective expected profit of player i who perceives correlation parameter κ and believes
elasticity to be r, when playing strategy αi and facing strategy α−i:

Lemma 2. For linear strategies αi, α−i and perceived parameters κ ∈ [0, 1], r ≥ 0, we have:

Ui(αi, α−i;κ, r) = E[s2
i ] ·

(
αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i

)
.

For the same parameters, the linear strategy

αBRi (α−i;κ, r) :=
γ − 1

2rψ(κ)α−i

1 + r

subjectively best responds to α−i at the interim stage among all (possibly non-linear) strategies
Qi : R → R.

One key insight of Lemma 2 is that an agent’s subjective expected utility and subjective
best response depend on their beliefs about κ and r, but not σ2

ζ . Call a linear strategy
more aggressive if its coefficient αi ≥ 0 is larger. Lemma 2 implies that agent i’s subjective
best response function becomes more aggressive when i believes in lower κ or lower r. The
intuition for this was outlined in the introduction. We have ∂αBRi

∂κ
< 0 as the agent can better

leverage her private information about market demand when her rival does not share the
same information. We have ∂αBRi

∂r
< 0 because inelastic demand induces the agent to behave

more aggressively, since prices become less responsive to quantity choices.
Lemma 2 calculates the subjective expected utility, and uses this expression to determine

the best response given these perceptions. However, an immediate corollary is that the
objective welfare coincides with this expression evaluated at r = r• and κ = κ•; that is,
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E[s2
i ] ·
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2α

2
i

)
This observation is useful for our fitness calculations below, where objective welfare and
perceived welfare may differ.

Finally, we characterize self-confirming inference given a strategy profile and a correlation
perception.

Lemma 3. There exists some L > 0 such that a unique self-confirming inference exists for
any κ ∈ [0, 1] and 0 ≤ αi, α−i ≤ γ whenever (σ•

ζ )2 ≥ L. In this case, the self-confirming
inference for elasticity is

rINFi (αi, α−i, ;κ•, κ, r•) := r•αi + α−iψ(κ•)
αi + α−iψ(κ) .

Lemma 3 shows that for agents with flexible models, there is a unique inference of the free
parameters r, σ2

ζ that perfectly matches the observed price distribution for any linear strategy
profile, provided the true price shock variance is large enough and both agents’ strategies are
less aggressive than γ. Note that by Lemma 2, i’s best response against any α−i is always
bounded by γ, given any beliefs κ ∈ [0, 1], r ≥ 0. Therefore, no linear equilibrium exists
where either player uses a strategy αi > γ and hence we do not need to worry about this
restriction when we compute equilibrium strategies.

The self-confirming property always holds in the linear equilibria we use to define resistance
to invasion. In the proof of Lemma 3, we define L as the largest price variance possible when
ζ = 0, for any κ and any strategies less aggressive than γ. As players change strategies, the
corresponding variance of the price will change as well. By imposing a lower bound on (σ•

ζ )2,
no matter what inference or strategy emerges in the equilibrium, players can infer σ2

ζ to
match the variance perfectly, and in particular they can do so independently of their inference
about the mean of the price distribution. This observation implies that the self-confirming
inference about r is the unique one such that the expected mean of the price distribution
matches the actual price distribution. While the value of L we define in the proof is larger
than necessary to ensure that a self-confirming inference exists, it allows us to avoid placing
joint restrictions on parameters and equilibrium strategies.

A key lesson of Lemma 3 is that for a fixed strategy profile, misperceiving a higher signal
correlation in the stage game causes the agent to infer a lower price elasticity, as suggested

13
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(b) κR = 0.6
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Figure 1: Fitness of flexible entrant models with different correlation perceptions, under
uniform matching against residents with two different levels of κR. The true parameters
are κ• = 0.3, r• = 1, (σ•

ζ )2 = σ2
ω = σ2

ϵ = 1. The dashed vertical line marks the resident’s
correlation parameter; the dashed horizontal line marks the resident’s fitness.

by the intuition in the introduction. This intuition will drive the interaction between signal
correlation misperception and misinference of the persistent price elasticity parameter in our
main results in the next section.

4 Selecting Biases and the Role of the Learning Channel

We now turn to the selection of correlation perceptions and ask how the answer depends
on whether agents have flexible models or dogmatic models. Throughout, we assume the
true price shock variance exceeds the threshold L from Lemma 3. We first consider uniform
matching with flexible models.

Proposition 1 (Uniform Matching Selects Projection Bias). Fix any r• > 0, κ• ∈ [0, 1] and
(σ•

ζ )2 ≥ L. Take any κ̃ ≤ κ•, and assume all agents have flexible models. Then there exists
κ ∈ [0, κ̃) and κ̄ ∈ (κ̃, 1] so that whenever (κR, κE) = (κ̃, κ) for κ ∈ [κ, κ̄], there is a unique
linear equilibrium with uniform matching.

Furthermore, κ̃ is susceptible to invasion with uniform matching if κ > κ̃ and resistant to
invasion with uniform matching if κ < κ̃.

A special case of the result is that κR = κ•, so that we find correctly specified residents are
susceptible to invasion by projection-biased entrants under uniform matching. The intuition
for this result follows from the observation that projection bias generates a commitment to
aggression as it leads the biased agents to under-infer market price elasticity. It is well-known
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that in Cournot oligopoly games, such commitment can be beneficial (Fershtman and Judd,
1987). Here, misspecification about signal correlation leads to misinference about elasticity,
which causes the entrants to respond credibly to their opponents’ play in an overly aggressive
manner.7 The rational residents back down and yield a larger share of the surplus.

However, projection bias is beneficial only in small measures, as excessive aggression can
lead to overproduction past the point where such commitments are beneficial—in other words,
where the strategic benefits of the misspecification are outweighed by the direct losses from
suboptimal production. Figure 1a illustrates this non-monotonicity of fitness in κE. Here, we
present a representative plot of the entrant’s fitness given a resident with κR = 0.2 ≤ κ• = 0.3.
While small increases in κE above κR improve entrant fitness, entrants no longer outperform
residents if κE is close to one. Thus, there is a limited range of entrant κE values such that
the entrant obtains higher welfare than the resident (i.e., where the graph of entrant fitness
is above the horizontal dashed line).

Proposition 1’s conclusion that residents are outperformed by entrants who have slightly
higher perception of signal correlation also applies when the residents are themselves mis-
specified about signal correlation, provided κR ≤ κ•. The intuition outlined above hinges on
the assumption that the residents are not excessively aggressive on their own. If the resident
were to exhibit a significant amount of projection bias (and thus under-infer price elasticity
by the same channel discussed above), then there may no longer be a gain to using an even
more aggressive strategy. This is illustrated in Figure 1b, which shows a representative plot
of the entrant’s fitness when κR is large—in particular, larger than κ• by a sufficient amount.
Here, while there are values of κE which outperform the resident, these values are below κR,
rather than above it. In this case, using a κE closer to κ• (and in particular, below κR) can
yield higher fitness. This calculation shows that Proposition 1 cannot be strengthened to
allow for arbitrary κR.

By contrast, assortative matching favors biases that lead to more cooperative behavior,
and thus the commitment to aggression is detrimental to fitness. Correspondingly, we obtain
the opposite result.

Proposition 2 (Assortative Matching Selects Correlation Neglect). Fix r• > 0 and (σ•
ζ )2 ≥ L.

Assume all agents have flexible models. Then, κR is susceptible to invasion with assortative
7In Fershtman and Judd (1987), firms can pay managers a convex combination of profit and sales, with

the main result being that a weight less than 1 should be placed on profit. Here, we show that similar
commitments can emerge with misspecified signal correlation.
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Figure 2: Fitness of flexible entrant models with different correlation perceptions, under
assortative matching with a correctly specified resident model κR = 0.3. The true parameters
are κ• = 0.3, r• = 1, (σ•

ζ )2 = σ2
ω = σ2

ϵ = 1. The dashed vertical line marks the objectively
true correlation parameter; the dashed horizontal line marks the resident’s fitness.

matching if κE < κR, and it is resistant to invasion with assortative matching if κE > κR.

Correlation neglect leads agents with flexible models to over-infer elasticity, enabling com-
mitment to less aggressive behavior. Figure 2 shows a representative plot of entrant fitness
under assortative matching for different correlation perceptions κE. Let αTEAM denote
the symmetric linear strategy profile that maximizes the sum of the two players’ expected
objective payoffs in the stage game. The proof of Proposition 2 shows that among symmetric
strategy profiles, players’ payoffs strictly decrease in aggressiveness in the region α > αTEAM .
For assortative matching and any κ ∈ [0, 1], the linear equilibrium behavior in a group with
correlation perception κ strictly increases in aggressiveness as κ grows, and this equilibrium
play is always strictly more aggressive than αTEAM .

Interestingly, in contrast to the case of uniform matching, with assortative matching there
are no qualifiers regarding whether the misspecification induces excessive cooperation—more
is always better. Lowering the perception of κ always confers an evolutionary advantage
by bringing equilibrium play closer to αTEAM—importantly, never reaching or exceeding it.
Notice that the payoff of an entrant under assortative matching does not depend on the
resident’s model. The idea that assortativity leads to cooperation is similar to the findings
of Alger and Weibull (2013); our contribution is to identify a particular channel for this to
arise—showing that decreasing perceived signal correlation uniformly favors cooperation.

Our results thus far have focused on the selection of correlation misperceptions under
flexible models. But as mentioned, the direct effect and the indirect effect of correlation
misperception go in opposite directions. The next result shows that if agents have dogmatic
models so that the learning channel is shut down, the conclusions of Propositions 1 and 2
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can be reversed:

Proposition 3. Let κ• ∈ [0, 1], r• > 0, (σ•
ζ )2 ≥ L be given and suppose all agents have

dogmatic models whose fixed parameters about price elasticity and price shock variance are
correct: (r̃, σ̃2

ζ ) = (r•, (σ•
ζ )2). Suppose κR = κ•.

• For any κh > κ•, κR is resistant to invasion from entrants with κE = κh under uniform
matching.

• For any κl < κ•, κR is resistant to invasion from entrants with κE = κl under assortative
matching.

Proposition 3 shuts down the learning channel by considering agents who know the true
value of r. This result identifies the indirect effect of elasticity misinference as responsible for
the evolutionary advantage conferred by the misperceptions of κ analyzed in Propositions
1 and 2. Intuitively, Proposition 3 comes from the fact that increasing perceived signal
correlation on its own leads to less aggressive strategies, as can be seen from the subjective
best replies presented in Lemma 2. This is because production quantities are strategic
substitutes, so that players who overestimate how much the opponent’s expected quantity
varies conditional on their own signals will react by making their own strategy depend less
on the same signals. This force turns out to be weaker than the indirect effect of the κ
misperception on the inference of r, which has the opposite impact on strategy aggressiveness.
However, the indirect effect is only present when agents use flexible models. Thus, we obtain
a sharp illustration of our main message that whether an error in higher-order beliefs can
persist in a rational society may depend on whether the biased agents are open-minded or
dogmatic about the values of the persistent parameters in the game.

In fact, the proof of Proposition 3 shows that it also applies in some situations with
misspecified residents. In particular, suppose residents have flexible models and they perceive
correlation to be κR, where possibly κR ≠ κ•. Suppose entrants have dogmatic models whose
fixed parameters about price elasticity and price shock variance are equal to those inferred
by the residents when they play against each other in linear partial equilibrium. If κR ≤ κ•,
residents are resistant to invasion from entrants with any κE > κR under uniform matching.
For any κR, residents are resistant to invasion from residents with any κE < κR under
assortative matching. In other words, starting in the equilibrium of a society where everyone
has the same (possibly misspecified) model, a given mutation in the correlation perception of
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a small group of agents leads to two opposite welfare consequences for them, depending on
whether they can update their former belief about the persistent game parameters.

5 Extensions

5.1 Misperception of Others’ Strategies

A key assumption of our framework, shared with the broader literature on the evolution of
preferences, is that agents correctly know others’ strategies in equilibrium. Here we discuss
how this assumption shapes our conclusions on the selection of biases and the role of the
learning channel.

We briefly describe how to modify our solution concept to accommodate misperceptions
of others’ strategies. For simplicity, we restrict attention to the case of uniform matching
and correctly specified residents (who correctly know others’ strategies in equilibrium). We
suppose that, in addition to misperceiving κ, entrants also dogmatically misperceive the
residents’ strategy to be α̂R, which may be different from their actual equilibrium strategy
α•
R. We consider both the case where the entrants have flexible models where price elasticity
r̃ and price shock variance σ̃2

ζ are free parameters, and the case where they have dogmatic
models where price elasticity and price shock variance are fixed parameters at their true
values r• and (σ•

ζ )2.

In this modified setting, for entrants who have the misperceptions κE and α̂R, a linear
equilibrium with strategy misperception consists of strategies αR→R, αR→E, αE→R and beliefs
(κ̃R, r̃R, σ̃2

ζ,R), (κE, r̃E, σ̃2
ζ,E) such that:

• αR→R, αR→R, (κ̃R, r̃R, σ̃2
ζ,R), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium

• αE→R is an interim-stage best response against α̂R, given the beliefs (κE, r̃R, σ̃2
ζ,E)

• If entrants have flexible models, then F •(αE→R, αR→E) = FκE ,r̃E ,σ̃2
ζ,E

(αE→R, α̂R)

• If entrants have dogmatic models, then (r̃E, σ̃2
ζ,E) = (r•, (σ•

ζ )2).

Here, the residents correctly know others’ strategies. They draw inferences and choose
subjectively optimal strategies just as in Definition 4. The entrants, given their beliefs about
the stage-game parameters, choose a subjective best response not against the actual strategy
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of the residents, but against their misperception α̂R of the residents’ strategy. Also, when
entrants have flexible models, this strategy misperception also affects their inference of the
persistent parameters, as they infer r̃E, σ̃2

ζ,E to rationalize the market price distribution under
the hypothesis that residents use the strategy α̂R.

By the same arguments as in the proof of Lemma 3, an entrant who repeatedly plays
αi against an opponent who plays α•

−i, who misperceives signal correlation to be κ and
misperceives the opponent’s strategy to be α̂−i, will infer price elasticity to be:

r̂ = r•αi + α•
−iψ(κ•)

αi + α̂−iψ(κ) .

This expression suggests that misperceptions of κ and misperceptions of others’ strategies
may have similar effects on inference and behavior. The next result verifies this intuition.
When combined with a suitable strategy misperception, every correlation misperception is
equally viable and the presence of the learning channel has no effect on the viability of a
correlation misperception.

Proposition 4. Fix any r• > 0, κ• ∈ [0, 1], (σ•
ζ )2 ≥ L, and κE ∈ [0, 1]. Let Ui(αi, α−i;κ, r)

and αBRi (α−i;κ, r) be as defined in Lemma 2, and define the Stackelberg payoff as

max
αi

Ui(αi, αBR−i (αi;κ•, r•);κ•, r•). (S)

For either entrants with flexible models or entrants with dogmatic models, there exists a
strategy misperception α̂R such that in a society with uniform matching where residents are
correctly specified and entrants have the misperceptions (κE, α̂R), there exists a unique linear
equilibrium with strategy misperception. Furthermore, the entrants’ fitness in this equilibrium
is the Stackelberg payoff (S).

For any correlation misperception, there is some suitably complementary misperception of
the residents’ strategy to induce the entrants to play the Stackelberg strategy of the LQN game
in equilibrium (taking into account the entrants’ equilibrium misinference of the elasticity
parameter in the case where they have flexible models). This gives them the Stackelberg
payoff, which is the best they can hope for against rational residents. In particular, this shows
that our conclusions about the comparative viability of different correlation misperceptions
and about the role of the learning channel no longer apply in a setting where entrants can
misperceive others’ strategies. No correlation misperception is more viable than any other
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misperception, and the presence of the learning channel has no effect on the viability of any
correlation misperception.

5.2 Evolutionary Advantage of Flexible Models with Correlation
Misperception When There Are Multiple Environments

In this section, we provide another justification for the importance of the learning channel
and the significance of higher-order errors. Roughly speaking, when agents must use the same
model to learn in “multiple environments,” flexible models with correlation misperception can
perform better than any dogmatic model and better than first-order misperceptions of the
game’s persistent parameters. More precisely, Section 5.2.1 considers a setting where agents
operate in multiple markets with different price elasticity parameters, so that the overall
fitness of a model is given by a weighted sum of its equilibrium profits in the various markets.
We show the resident rational model may be resistant to invasion from any dogmatic model
but be susceptible to invasion from some flexible model. Section 5.2.2 compares the utility
and inference consequences of different kinds of misperceptions in an alternative environment
where the agents act as monopolists. We find that higher-order errors associated with
correlation misperception cause no loss of profit and no belief distortion about price elasticity
when agents are monopolists. By contrast, models that encode first-order errors about the
slope or intercept of the demand curve always cause losses in the monopoly environment.

5.2.1 Stability and Invasion with Heterogeneous Markets

Suppose the agents interact in multiple markets with different true values of the price elasticity
parameter. There are M ≥ 2 different markets, indexed by m = 1, 2, ...,M , with M finite.
The true price elasticity is rm > 0 in market m and agents interact in this market with
frequency ϕm > 0 where ∑M

m=1 ϕ
m = 1. Agents know which market they face in each period,

but they are ex-ante uncertain about the values of the price elasticity parameters in different
markets. Agents play a linear equilibrium in every market, so an agent can estimate different
values of price elasticity for different markets (if r is a flexible parameter in their model).

Fix (rm), (ϕm), the entrant model, and the resident model. We focus on the case of
uniform matching. A linear equilibrium with heterogeneous markets consists of strategies
αmR→R, α

m
R→E, α

m
E→R and beliefs (κ̃mR , r̃mR , (σ̃2

ζ,R)m), (κ̃mE , r̃mE , (σ̃2
ζ,E)m) for each market m, so that

the strategies and beliefs in market m form a linear equilibrium with uniform matching under
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the true parameter rm. We say that the resident model is resistant to invasion from the
entrant model with uniform matching if

M∑
m=1

ϕm · U•(αmR→R, α
m
R→R; rm) ≥

M∑
m=1

ϕm · U•(αmE→R, α
m
R→E; rm),

in every linear equilibrium with heterogeneous markets. We say it is susceptible to invasion if

M∑
m=1

ϕm · U•(αmR→R, α
m
R→R; rm) <

M∑
m=1

ϕm · U•(αmE→R, α
m
R→E; rm),

in every linear equilibrium with heterogeneous markets. Here, U•(αi, α−i; rm) refers to the
objective payoff when an agent uses αi, their opponent uses α−i, and the true price elasticity
is rm.

The next result shows that the rational resident model may be resistant to invasion
from any dogmatic model, but be susceptible to invasion from a flexible entrant model with
projection bias. The idea is that a dogmatic entrant model specifies the same fixed belief
about price elasticity in all markets, which is beneficial for some values of the true price
elasticity parameter but harmful for others. By contrast, a flexible entrant model can make
different inferences about price elasticity in different markets and outperform the correctly
specified resident model in every market.

Proposition 5. Fix any κ• ∈ [0, 1], (σ•
ζ )2 ≥ L. There exists a heterogeneous markets

environment with M = 2 different markets such that the correctly specified resident model
is resistant to invasion from any dogmatic entrant model. On the other hand, for any
heterogeneous markets environment with any finite M , there exists a flexible model with
projection bias so that the correctly specified resident model is susceptible to its invasion.

5.2.2 Higher-Order Versus First-Order Misperceptions in Monopoly Markets

Now we consider an alternative stage game, which we call the monopoly market. Agents
are paired to play this game and each chooses a quantity level. But, while the demand
state ω ∼ N (0, σ2

ω) is commonly drawn for both players in the game, the two players do not
interact strategically. Each player i is a monopolist and faces a market price Pi that does not
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depend on their opponent’s quantity choice, with

Pi = ω − r•qi + ζi

where price shock ζi ∼ N (0, (σ•
ζ )2) is drawn i.i.d. for the two players. As in the baseline

stage game, each i observes a signal si = ω + ϵi before choosing their quantity, where the
joint distribution between ϵ1 and ϵ2 is the same as before. At the end of the match, agent i
observes their signal si, their quantity choice qi, and their market price Pi.

In addition to the misperception of signal correlation studied so far (a higher-order error
about the belief of the opponent), we also consider two types of first-order misperceptions of the
persistent parameters. Agents think that the market price is generated by Pi = ω+θ−r•qi+ζi
for some θ ∈ R. So, they need to form beliefs about the correlation parameter κ, price
elasticity r, price shock variance σ2

ζ , and intercept θ. A model dogmatically specifies the
values of some parameters (fixed parameters) and lets the agent flexibly estimate the values
of the other parameters (free parameters) in their respective domains. The domains of r and
σ2
ζ are [0,∞) while the domain of θ is R.

We define the equilibrium concept for a society with the monopoly market stage game,
which generalizes the linear equilibrium concept by allowing for non-linear equilibrium
strategies and equilibrium inferences that do not fully explain the distribution of consequences.
Since the two players in the game do not affect each other’s payoffs and observations, the
matching assortativity is irrelevant. For the same reason, equilibrium only needs to specify
a single strategy for each population, not multiple strategies to be played against different
types of opponents.

An equilibrium consists of strategiesQR, QE : R → R and beliefs (κ̃R, r̃R, σ̃2
ζ,R, θR), (κ̃E, r̃E, σ̃2

ζ,E, θE)
such that:

• For each player i and signal realization si, Qi(si) maximizes i’s subjective expected
utility given belief (κ̃i, r̃i, σ̃2

ζ,i, θi).

• For each player i, beliefs about the fixed parameters are as specified by i’s model.

• For each player i, beliefs about the free parameters minimize the Kullback–Leibler
divergence of the true distribution of consequences from the subjective distribution of
consequences under the parameters and the strategy Qi.
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The flexible models that we have studied in the baseline environment correspond to models
that have a fixed (and correct) parameter θ and have a fixed (and possibly wrong) parameter
κ. The next result says that these models, in equilibrium, generate the objectively optimal
payoffs for any misperception κ. That is, the higher-order errors that we have been studying
do not lower profits in monopoly markets.

Proposition 6. For any model where θ is fixed and correct, κ is fixed (and possibly wrong),
and r, σ2

ζ are free parameters, the equilibrium objective expected utility of the agents who use
this model is the highest possible across all strategies. In equilibrium, agents with this model
infer the correct r and σ2

ζ .

Now consider models that encode first-order misperceptions of the persistent game
parameters. The next result implies that models with a dogmatically wrong r parameter or
dogmatically wrong θ parameter lead to losses, regardless of whether the other parameters
are fixed or free.

Proposition 7. For any model where r is fixed and wrong or θ is fixed and wrong, the
equilibrium objective expected utility is strictly lower than the highest possible across all
strategies.

Thus, an evolutionary advantage of the correlation misperception compared to first-order
misperceptions of the intercept or slope of the demand curve is that the former does not
cause loss of profit in monopoly markets.

One story for why the higher-order error is more likely to emerge or persist is that agents
need to do well in both duopoly markets and monopoly markets, so the invading bias must
lead to weakly higher payoffs than that of the rational residents in both kinds of markets and
strictly higher payoff in at least one. Proposition 7 shows that the correlation misperceptions
that strictly increase the entrant’s payoffs in the baseline duopoly markets perform just as
well as the rational resident model in monopoly markets. While first-order misperceptions
of the game parameters can also improve payoffs in duopoly markets, Proposition 7 implies
they always lead to strict profit losses in monopoly markets.

5.3 More General Stage Games and Information Structures

We turn to general incomplete-information games and provide a condition for a model to
be susceptible to invasion from a “nearby” misspecified model. This condition shows how
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assortativity and the learning channel shape the evolutionary selection of models for a broader
class of stage games and biases.

Consider a stage game where a state of the world ω is drawn each time the game is
played. Players 1 and 2 observe private signals s1, s2 ∈ S ⊆ R, possibly correlated given ω.

The objective distribution of (ω, s1, s2) is P•. Based on their signals, players choose actions
q1, q2 ∈ R and receive random consequences y1, y2 ∈ Y. The distribution over consequences
as a function of (ω, s1, s2, q1, q2) and the utility over consequences π : Y → R are such that
each player i’s objective expected utility from taking action qi against opponent action q−i in
state ω is given by u•

i (qi, q−i;ω), differentiable in its first two arguments.
For an interval of real numbers [κ, κ̄] with κ < κ̄ and κ• ∈ (κ, κ̄), suppose there is a

family of models (Θ(κ))κ∈[κ,κ̄]. Let λ = 0 denote the case where matching is uniform and
λ = 1 denote the case where it is assortative. Suppose the resident model in the society is
ΘR = Θ(κ•) and the entrant model is ΘE = Θ(κ) for some κ ∈ [κ, κ̄]. Each model Θ can
contain both fixed parameters that dogmatically determine the agent’s belief in equilibrium
and free parameters whose values must be inferred to match the observable distribution over
consequences given the equilibrium strategies.

As in Definition 4, a linear equilibrium for a given interaction structure λ ∈ {0, 1} consists
of each group g’s beliefs µg about the persistent game parameters and each group g’s strategy
when playing each opponent group g′ (denoted by σg→g′ : S → R) such that:

• Every agent maximizes their subjective expected utility in every match (given opponent’s
strategy and their belief about the persistent game parameters),

• Each group g’s beliefs about the fixed parameters are as specified by g’s model, and
beliefs about the free parameters are self-confirming inferences — that is, parameter
values that generate the observed distribution of consequences in the matches that
group g faces with probability 1, and

• All strategies are linear functions of private signal realizations – that is, for every group
g and every opponent group g′, the strategy σg→g′(si) = αg→g′ · si for some real number
αg→g′ .

The next assumption requires there to be a unique linear equilibrium for either interaction
structure and for any κ ∈ [κ, κ̄]. A significant portion of our analysis for our duopoly model
aimed to demonstrate these existence and uniqueness properties. On the other hand, linear
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equilibria exist and are unique in a large class of games outside of the duopoly framework, and
in particular in more general linear-quadratic-normal games under some conditions on the
payoff functions (see, e.g., Angeletos and Pavan (2007)), and hence we expect this condition
will also hold in broader environments.

Assumption 1. Suppose there is a unique linear equilibrium for either λ ∈ {0, 1}, with
ΘR = Θ(κ•), ΘE = Θ(κ) for every κ ∈ [κ, κ̄]. Suppose the κ-indexed linear equilibrium
strategies coefficients αR→R(κ), αR→E(κ), αE→R(κ), αR→R(κ) are differentiable in κ. Finally,
suppose that in the linear equilibrium with κ = κ•, αR→R(κ•) is objectively interim-optimal
against itself.8

Proposition 8. Fix λ ∈ {0, 1} and let α• := αR→R(κ•). Then, under Assumption 1, if

E•
[
E•
[
∂u•

1
∂q2

(α•s1, α
•s2, ω) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)] · s2 | s1

]]
> 0,

then there exists some ϵ > 0 so that Θ(κ•) is susceptible to invasion from models Θ(κ) with
κ ∈ (κ•, κ• + ϵ] ∩ [κ, κ̄], with λ interaction structure. Also, if

E•
[
E•
[
∂u•

1
∂q2

(α•s1, α
•s2, ω) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)] · s2 | s1

]]
< 0,

then there exists some ϵ > 0 so that Θ(κ•) is susceptible to invasion from models Θ(κ) with
κ ∈ [κ• − ϵ, κ•) ∩ [κ, κ̄], with λ interaction structure. Here E• is the expectation with respect
to the objective distribution of (ω, s1, s2) under P•.

Proposition 8 describes a general condition to determine whether a correctly specified
model is susceptible to invasion from a “nearby” misspecified entrant model, as indexed by κ.
The condition asks if a slight change in the entrant model’s κ leads entrants’ opponents to
change their equilibrium actions such that the entrants become better off on average. These
opponents are the residents under uniform matching λ = 0, so α′

R→E(κ•) is relevant. These
opponents are other entrants under assortative matching λ = 1, so α′

E→E(κ•) is relevant.
Proposition 8 implies that one should only expect the correctly specified model to be

resistant to invasion from all nearby models in “special” cases — that is, when the expectation
in the statement of Proposition 8 is exactly equal to 0. One such special case is when the

8We say αR→R is objectively interim-optimal against itself if, for every si ∈ S, αR→R(κ•) · si maximizes
the agent’s objective expected utility across all of R when −i uses the same linear strategy αR→R(κ•).
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agents face a decision problem where player 2’s action does not affect player 1’s payoffs, that
is ∂u•

1
∂q2

= 0. This condition sets the expectation to zero, so Proposition 8 never implies that
the correctly specified model is susceptible to invasion from a misspecified model in such
decision problems.

In the duopoly game analyzed previously, we have ∂u•
1

∂q2
(q1, q2, ω) = −1

2r
•q1. Player 1 is

harmed by player 2 producing more if q1 > 0 and helped if q1 < 0. From straightforward
algebra, the expectation in Proposition 8 simplifies to

E•[s2
1] · (−1

2ψ(κ•)r•α•) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)].

Focusing on the case where all agents have flexible models, the proof of Proposition 1
shows that when λ = 0, α′

R→E(κ•) < 0. The proof of Proposition 2 shows that when λ = 1,
α

′
E→E(κ•) > 0. The uniqueness of linear equilibrium also follows from these results, for an

open interval of κ containing κ•. Lemma 2 implies linear strategies played by two correctly
specified players against each other are objectively interim-optimal. So, the conditions of
Proposition 8 hold for λ ∈ {0, 1}, and we deduce that with flexible models, the correctly
specified model is susceptible to invasion from slightly higher κ (for λ = 0) and slightly lower
κ (for λ = 1).

6 Conclusion

The main message of this paper is that whether an error in higher-order belief in the stage
game is likely to survive can depend on whether agents have dogmatic or flexible views about
other persistent parameters of the stage game. In the context of an incomplete-information
duopoly game, we show that the welfare implications of a higher-order misperception of
the transient demand state depend crucially on whether people know the persistent price
elasticity with certainty or estimate this elasticity from past prices. Working in a canonical
linear-quadratic-normal game setting, we view our paper as illustrating the practical value of
the evolutionary framework in terms of guiding our thinking about the viability of biases.
More broadly, our results point out that the viability of a given error must be evaluated in
the context of other factors, such as whether agents engage in inference about the persistent
stage-game parameters. It may be worthwhile to investigate other factors that can enhance
or hinder the viability of certain behavioral biases in future work.
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Appendix
A Proofs

A.1 Proof of Lemma 1

Proof. For i ̸= j, rewrite si =
(
ω + κ√

κ2+(1−κ)2
z
)

+ 1−κ√
κ2+(1−κ)2

ηi and sj =
(
ω + κ√

κ2+(1−κ)2
z
)

+
1−κ√

κ2+(1−κ)2
ηj. Note that ω+ κ√

κ2+(1−κ)2
z has a normal distribution with mean 0 and variance

σ2
ω+ κ2

κ2+(1−κ)2σ
2
ϵ . The posterior distribution of

(
ω + κ√

κ2+(1−κ)2
z
)

given si is therefore normal

with a mean of
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )
si and a variance of 1

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )
.

Since ηj is mean-zero and independent of i’s signal, the posterior distribution of sj | si
under the correlation parameter κ is normal with a mean of

1/( (1−κ)2

κ2+(1−κ)2σ
2
ϵ )

1/(σ2
ω + κ2

κ2+(1−κ)2σ2
ϵ ) + 1/( (1−κ)2

κ2+(1−κ)2σ2
ϵ )
si

and a variance of 1
1/(σ2

ω+ κ2
κ2+(1−κ)2 σ

2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

+ (1−κ)2

κ2+(1−κ)2σ
2
ϵ . We thus define

ψ(κ) :=
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

for κ ∈ [0, 1), and ψ(1) := 1. To see that ψ(κ) is

strictly increasing in κ, we have

1/ψ(κ) = 1 +
(1−κ)2

κ2+(1−κ)2σ
2
ϵ

σ2
ω + κ2

κ2+(1−κ)2σ2
ϵ

= 1 + (1 − κ)2σ2
ϵ

(κ2 + (1 − κ)2)σ2
ω + κ2σ2

ϵ

and then we can verify that the second term is decreasing in κ.

As κ → 1, the term 1/( (1−κ)2

κ2+(1−κ)2σ
2
ϵ ) tends to ∞, so

1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

ap-

proaches
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/( (1−κ)2
κ2+(1−κ)2 σ

2
ϵ )

= 1. We also verify that ψ(0) = 1/σ2
ϵ

(1/σ2
ω)+(1/σ2

ϵ ) > 0.

Finally, for any κ ∈ [0, 1], κ√
κ2+(1−κ)2

z + 1−κ√
κ2+(1−κ)2

ηi has variance σ2
ϵ and mean 0, so

Eκ[ω | si] = 1/σ2
ϵ

1/σ2
ϵ+1/σ2

ω
si. We then define γ as the strictly positive constant 1/σ2

ϵ

1/σ2
ϵ+1/σ2

ω
.
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A.2 Proof of Lemma 2

Proof. Player i’s conditional expected utility given signal si is

αisi · Eκ[ω − 1
2rαisi − 1

2rα−is−i + ζ|si] − 1
2(αisi)2

=αisi · (γsi − 1
2rαisi − 1

2rψ(κ)siα−i) − 1
2(αisi)2

=s2
i · (αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i ).

The term in parenthesis does not depend on si, and the second moment of si is the same
for all values of κ. Therefore this expectation is E[s2

i ] ·
(
αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i

)
.

The expression for αBRi (α−i;κ, r) follows from simple algebra, noting that E[s2
i ] > 0 while

the second derivative with respect to αi for the term in the parenthesis is −1
2r − 1

2 < 0.
To see that the said linear strategy is optimal among all strategies, suppose i instead

chooses any qi after si. By the above arguments, the objective to maximize is

qi · (γsi − 1
2rqi − 1

2rψ(κ)siα−i) − 1
2q

2
i .

This objective is a strictly concave function in qi, as −1
2r − 1

2 < 0. The first-order condition
determines the maximizer, q∗

i = αBRi (α−i;κ, r) · si. Therefore, the linear strategy also
maximizes interim expected utility after every signal si, so it cannot be improved upon by
any other strategy.

A.3 Proof of Lemma 3

Proof. Conditional on the signal si, the distribution of market price under the model Fκ,r̂,σ̂2
ζ

is normal with a mean of

E[ω | si] − 1
2 r̂αisi − 1

2 r̂α−i · Eκ[s−i | si] = γsi − 1
2 r̂αisi − 1

2 r̂α−iψ(κ)si,

while the distribution of market price under Fκ•,r•,(σ•
ζ

)2 is normal with a mean of

E[ω | si] − 1
2r

•αisi − 1
2r

•α−i · Eκ• [s−i | si] = γsi − 1
2r

•αisi − 1
2r

•α−iψ(κ•)si.
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Matching coefficients on si, we find that if r̂ = r• αi+α−iψ(κ•)
αi+α−iψ(κ) , then these means match after

every si for any αi, α−i. On the other hand, for any other value of r̂, these means will not
match for any si ̸= 0.

Conditional on the signal si, the variance of market price under F
κ,r• αi+α−iψ(κ•)

αi+α−iψ(κ) ,σ̂
2
ζ

is

Varκ
[
ω − 1

2r
•αi + α−iψ(κ•)
αi + α−iψ(κ) α−is−i | si

]
+ σ̂2

ζ .

By properties of the multivariate normal distribution, this conditional variance is constant in
si. Let L = maxκ∈[0,1],0≤αi,α−i≤γ Varκ

[
ω − 1

2r
• αi+α−iψ(κ•)
αi+α−iψ(κ) α−is−i | si

]
. This maximum exists

and is finite since the expression is a continuous function of κ, αi, α−i on the compact domain
[0, 1] × [0, γ]2. The conditional variance of market price under F

κ,r• αi+α−iψ(κ•)
αi+α−iψ(κ) ,σ̂

2
ζ

is bounded

by L+ σ̂2
ζ whenever 0 ≤ αi, α−i ≤ γ.

On the other hand, the variance of market price under Fκ•,r•,σ•
ζ

is at least (σ•
ζ )2. Thus,

whenever (σ•
ζ )2 ≥ L, there exists a unique value of σ̂2

ζ such that the conditional variance
under F

κ,r• αi+α−iψ(κ•)
αi+α−iψ(κ) ,σ̂

2
ζ

is the same as that under Fκ•,r•,(σ•
ζ

)2 given every si.

A.4 Proof of Proposition 1

Proof. Take L as in Lemma 3. For κR = κ̃ and any κE ∈ [0, 1], consider a candidate linear
equilibrium with strategies 0 ≤ αR→R, αE→R, αR→E ≤ γ, together with the self-confirming
inferences given these strategies – such inferences exist and are unique by Lemma 3. From
Lemma 3, the residents’ belief must be rR := r• 1+ψ(κ•)

1+ψ(κR) . We note that r• ≤ rR ≤ 2r• since
ψ(κR) ∈ (0, ψ(κ•)].

Using the equilibrium belief of the resident, we must have αR→R = αBRi (αR→R;κR, rR),
so using the formula from Lemma 2 we find the unique solution αR→R = γ

1+rR+ 1
2 rRψ(κR) .

Next, we turn to αR→E, αE→R, and rE, the entrant’s self-confirming inference. For agents
in each group to best respond to each others’ play and for the entrant’s inferences to
be self-confirming, we must have αR→E = γ− 1

2 rRψ(κR)αE→R

1+rR , αE→R = γ− 1
2 rEψ(κE)αR→E

1+rE , and
rE = r• αE→R+αR→Eψ(κ•)

αE→R+αR→Eψ(κE) from Lemma 3. We may rearrange the expression for αE→R to say
αE→R = γ−rEαE→R− 1

2rEψ(κE)αR→E. Substituting the expression of rE into this expression
of αE→R, we get
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αE→R = γ − rE · (αE→R + αR→Eψ(κE) − 1
2αR→Eψ(κE))

= γ − r•αE→R + r•αR→Eψ(κ•)
αE→R + αR→Eψ(κE) · (αE→R + αR→Eψ(κE) − 1

2αR→Eψ(κE))

= γ − r•αE→R − r•αR→Eψ(κ•) + 1
2ψ(κE)αR→E

r•αE→R + r•αR→Eψ(κ•)
αE→R + αR→Eψ(κE)

Multiply by αE→R + αR→Eψ(κE) on both sides and collect terms,

(αE→R)2 · [−1 − r•] + (αE→RαR→E) · [−ψ(κE) − 1
2r

•ψ(κE) − r•ψ(κ•)]

− (αR→E)2 · [12r
•ψ(κ•)ψ(κE)] + γ[αE→R + αR→Eψ(κE)] = 0. (1)

Consider the following quadratic function in x,

H(x) := x2 [−1 − r•]+(x · ℓ(x))·[−ψ(κE)−1
2r

•ψ(κE)−r•ψ(κ•)]−(ℓ(x))2[12r
•ψ(κ•)ψ(κE)]+γ [x+ ℓ(x)ψ(κE)] = 0,

(2)
where ℓ(x) := γ− 1

2 rRψ(κR)x
1+rR is a linear function in x. In a linear equilibrium, αE→R is a root of

H(x) in [0, γ
1
2 rRψ(κR) ]. To see why, if we were to have αE→R >

γ
1
2 rRψ(κR) , then αR→E = 0. In

that case, rE = r• and so αE→R = αBRi (0;κE, r•) = γ
1+r• . Yet,

γ
1
2rRψ(κR) = γ

1
2r

• 1+ψ(κ•)
1+ψ(κR)ψ(κR)

≥ γ
1
2r

• · 2 = γ

r• ≥ γ

1 + r• ,

which contradicts αE→R >
γ

1
2 rRψ(κR) . Conversely, for any root x∗ of H(x) in [0, γ

1
2 rRψ(κR) ], there

is a linear equilibrium where αE→R = x∗, αR→E = ℓ(x∗) ∈ [0, γ], and rE = r• αE→R+αR→Eψ(κ•)
αE→R+αR→Eψ(κE) .

We now state and prove a useful claim.

Claim A.1. There exist some κ1 < κR < κ̄1 so that H has a unique root in [0, γ
1
2 rRψ(κR) ] for

all κE ∈ [κ1, κ̄1] ∩ [0, 1].

Proof. We show that when κE = κR, H(x) (i) has a unique root in [0, γ
1
2 rRψ(κR) ]; (ii) H(0) > 0

and H( γ
1
2 rRψ(κR)) < 0. By these two statements, since H(x) is a continuous function of κE,

there must exist some κ1 < κR < κ̄1 so that it continues to have a unique root in [0, γ
1
2 rRψ(κR) ]

for all κ ∈ [κ1, κ̄1] ∩ [0, 1].
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Statement (i) has to do with the fact that when κE = κR, we need αE→R = γ− 1
2 rRψ(κR)αR→E

1+rR

and αR→E = γ− 1
2 rRψ(κR)αE→R

1+rR . These are linear best response functions with a slope of
−1

2
rR

1+rRψ(κR), which falls in (−1
2 , 0). So there can only be one solution to H in that region

(even when we allow αE→R ≠ αR→E), which is the symmetric equilibrium found before
αE→R = αR→E = γ

1+rR+ 1
2 rRψ(κR) .

For Statement (ii), we evaluate H(0) = −( γ
1+rR )2 1

2r
•ψ(κ•)ψ(κR) + γ2ψ(κR)

1+rR = ψ(κR)γ2

1+rR (1 −
(1/2)r•ψ(κ•)

1+rR ) > 0 because 1+ rR > (1/2)r•ψ(κ•), as rR ≥ r•. Then, we evaluate H( γ
1
2 rRψ(κR)) =

( γ
1
2 rRψ(κR))

2(−1 − r•) + γ γ
1
2 rRψ(κR) = γ2

1
2 rRψ(κR)(1 − 1+r•

1
2 rRψ(κR)). This is strictly negative because

rR ≤ 2r•.

Returning to the proof of Proposition 1: by Claim A.1, for κE ∈ [κ1, κ̄1] ∩ [0, 1], entrants
has only one possible belief about elasticity (denoted by rE(κE) in linear equilibrium), since
there is only one possible outcome in the match between the entrants and the residents. So
for every κE ∈ [κ1, κ̄1]∩ [0, 1], there is a unique linear equilibrium, where equilibrium behavior
is given as a function of κE by α(κE) = (αR→R(κE), αR→E(κE), αE→R(κE)).

Recall from Lemma 2 that the objective expected utility from playing αi against an
opponent who plays α−i is U•(αi, α−i) = E[s2

i ] · (αiγ − 1
2r

•α2
i − 1

2r
•ψ(κ•)αiα−i − 1

2α
2
i ). If −i

plays the best response under beliefs (κR, rR), then the objective expected utility of choosing
αi is Ūi(αi) := E[s2

i ] · (αiγ− 1
2r

•α2
i − 1

2r
•ψ(κ•)αi

γ− 1
2 rRψ(κR)αi

1+rR − 1
2α

2
i ). The derivative in αi has

the same sign as:

Ū
′

i (αi) ∝ γ − r•αi − 1
2r

•ψ(κ•)[
γ − 1

2rRψ(κR)αi
1 + rR

− αi

1
2rRψ(κR)

1 + rR
] − αi.

So, Ū ′
i(αRR) has the same sign as:

γ − r•αRR − 1
2r

•ψ(κ•)[
γ − 1

2rRψ(κR)αRR
1 + rR

− αRR

1
2rRψ(κR)

1 + rR
] − αRR

=γ − r•αRR − 1
2r

•ψ(κ•) 1
1 + rR

[γ − rRψ(κR)αRR] − αRR

=γ · (1 − 1
2r

•ψ(κ•) 1
1 + rR

) + αRR[12r
•ψ(κ•)rRψ(κR)

1 + rR
− r• − 1].
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Making the substitution αRR = γ
1+rR+ 1

2 rRψ(κR) , we get:

1 − 1
2r

•ψ(κ•) 1
1 + rR

+ 1
1 + rR + 1

2rRψ(κR) · [12r
•ψ(κ•)rRψ(κR)

1 + rR
− r• − 1].

Multiply through by (1 + rR)(1 + rR + 1
2rRψ(κR)), we have

(1 + rR)(1 + rR + 1
2rRψ(κR)) − 1

2r
•ψ(κ•)[1 + rR + 1

2rRψ(κR)] + [12r
•ψ(κ•)rRψ(κR)] − [1 + r•] · (1 + rR)

=(1 + rR)(1 + rR + 1
2rRψ(κR)) − 1

2r
•ψ(κ•)[1 + rR] + [14r

•ψ(κ•)rRψ(κR)] − [1 + r•] · (1 + rR)

=(1 + rR)(1 + rR + 1
2rRψ(κR) − 1

2r
•ψ(κ•) − 1 − r•) + [14r

•ψ(κ•)rRψ(κR)]

=(1 + rR)[(rR)(1 + 1
2ψ(κR)) − r•(1 + 1

2ψ(κ•))] + [14r
•ψ(κ•)rRψ(κR)].

A sufficient condition for Ū ′
i(αRR) > 0 is for (rR)(1+ 1

2ψ(κR))
r•(1+ 1

2ψ(κ•)) ≥ 1. We have:

(rR)(1 + 1
2ψ(κR))

r•(1 + 1
2ψ(κ•)) = 1 + ψ(κ•)

1 + ψ(κR) ·
(1 + 1

2ψ(κR))
1 + 1

2ψ(κ•) = 1 + ψ(κ•)
1 + 1

2ψ(κ•) ·
1 + 1

2ψ(κR)
1 + ψ(κR)

But note that this term is 1 when κR = κ•, and d
dx

[1+ 1
2ψ(x)

1+ψ(x) ] has the same sign as
1
2ψ

′(x)(1 + ψ(x)) − (1 + 1
2ψ(x))ψ′(x) = 1

2ψ
′(x) − ψ′(x) < 0 for all x ∈ [0, 1], since ψ′(x) > 0

for all x ∈ [0, 1]. This tells us that in fact, for any κR ≤ κ•, we get Ū ′
i(αRR) > 0.

Therefore, if we can show that α′
E→R(κR) > 0, then there exists some κ1 ≤ κ < κR < κ̄ ≤

κ̄1 so that for every κE ∈ [κ, κ̄] ∩ [0, 1], κE ̸= κR entrants have strictly higher or strictly lower
equilibrium fitness in the unique linear equilibrium than residents, depending on the sign of
κE − κR.

Consider again the quadratic function H(x) in Equation (2) and implicitly characterize
the unique root x in [0, γ

1
2 rRψ(κR) ] as a function of κE in a neighborhood around κR. Denote

this root by αM , let D := dαM

dψ(κE) and also note dℓ(αM )
dψ(κE) = −rR

2(1+rR)ψ(κR) ·D. We have

(−1 − r•) · (2αM ) ·D + (αMℓ(αM ))(−1 − 1
2r

•)

+ (ℓ(αM )D + αM
−rR

2(1 + rR)ψ(κR)D) · (−ψ(κE) − 1
2r

•ψ(κE) − r•ψ(κ•)) + (ℓ(αM ))2 · (−1
2r

•ψ(κ•))

+ (2ℓ(αM ) −rR
2(1 + rR)ψ(κR)D) · (−1

2r
•ψ(κ•)ψ(κE)) + γ(D + ℓ(αM ) + ψ(κE) −rR

2(1 + rR)ψ(κR)D) = 0
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Evaluate at κE = κR, noting that αM(κR) = ℓ(αM(κR)) = x∗ := γ
1+rR+ 1

2ψ(κR)rR
. The terms

without D are:

(x∗)2(−1 − 1
2r

•) − (x∗)2(1
2r

•ψ(κ•)) + γx∗ = x∗ ·
[
−x∗ ·

(
1 + r• + 1

2ψ(κ•)r• − 1
2r

•
)

+ γ

]
= x∗ ·

[
−x∗ · (1 + r• + 1

2ψ(κ•)r•) + 1
2x

∗r• + γ

]
.

Now we show 1+r•+ 1
2ψ(κ•)r•

1+rR+ 1
2ψ(κR)rR

≤ 1 for κR ≤ κ•. We have rR = r• 1+ψ(κ•)
1+ψ(κR) , so rR+ 1

2ψ(κR)rR =

r•[1 + ψ(κ•)] · 1+ 1
2ψ(κR)

1+ψ(κR) . As shown before, d
dx

[1+ 1
2ψ(x)

1+ψ(x) ] < 0, so 1 + rR + 1
2ψ(κR)rR ≥ 1 + r• +

1
2ψ(κ•)r• for κR ≤ κ•. Thus, the terms without D are larger than x∗ ·

[
−γ + 1

2x
∗r• + γ

]
, so

they are strictly positive.
The coefficient in front of D is:

(−1 − r•)(2x∗) + (x∗ + x∗ −rR
2(1 + rR)ψ(κR)) · (−ψ(κR) − 1

2r
•ψ(κR) − r•ψ(κ•))

+ 1
2x

∗ r•rR
(1 + rR)ψ(κR)2 · ψ(κ•) + γ + γψ(κR)2 · −rR

2(1 + rR)

Make the substitution γ = x∗ ·
(
1 + rR + 1

2ψ(κR)rR
)
,

x∗ ·
{

−2 − 2r• +
(

1 − rR
2(1 + rR)ψ(κR)

)
· (−ψ(κR) − 1

2r
•ψ(κR) − r•ψ(κ•)) + r•rR

2(1 + rR)ψ(κR)2 · ψ(κ•)
}

+x∗ ·
{(

1 + rR + 1
2ψ(κR)rR

)
· (1 − ψ(κR)2 rR

2(1 + rR))
}
.

Collect terms inside the parenthesis based on powers of ψ(κ•) and ψ(κR), we get

x∗ ·
{
ψ(κR)2 · ψ(κ•) r•rR

2(1 + rR) − rR
2(1 + rR)ψ(κR)(−ψ(κR) − 1

2r
•ψ(κR) − r•ψ(κ•))

}

+x∗ ·
{
ψ(κR)(−1

2r
• − 1) + ψ(κ•)(−r•) − 2r• − 2

}
+x∗ ·

{
−ψ(κR)3 (rR)2

4(1 + rR) − ψ(κR)2rR
2(1 + rR) · (1 + rR) + 1 + rR + 1

2ψ(κR)rR
}
.

For the terms without ψ(κ•) and ψ(κR), we have 1 + rR − 2 − 2r• < 0, since rR ≤ 2 · r•.
For the terms with the first power of ψ(κ•) or ψ(κR), the only positive term is 1

2ψ(κR)rR
and the two negative terms are ψ(κ•)(−r•) and ψ(κR)(−1

2r
• − 1). We note that ψ(κ•)(r•) ≥
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ψ(κR)rR. This is because ψ(κR)rR
ψ(κ•)(r•) =

ψ(κR)·r•· 1+ψ(κ•)
1+ψ(κR)

ψ(κ•)(r•) = 1+ψ(κ•)
ψ(κ•) · ψ(κR)

1+ψ(κR) . This ratio is 1 when
κR = κ•, and d

dx
[ ψ(x)

1+ψ(x) ] ∝ ψ′(x)(1 + ψ(x)) − ψ(x)ψ′(x) = ψ′(x) > 0. So, when kR ≤ κ•,

we have ψ(κR)rR
ψ(κ•)(r•) ≤ 1 and hence ψ(κ•)(r•) ≥ ψ(κR)rR. So, the positive term 1

2ψ(κR)rR is
canceled out by half of ψ(κ•)(−r•), and we still have 1

2ψ(κ•)(−r•) leftover. The negative
term ψ(κR)(−1

2r
• − 1) also remains.

For the terms with the third power of ψ(κ•) and ψ(κR), the only positive term is
ψ(κR)2 · ψ(κ•) r•rR

2(1+rR) . But this term is smaller than 1
2ψ(κ•)r•, since ψ(κR)2 · rR

1+rR < 1.
Therefore it is canceled out by the leftover term 1

2ψ(κ•)(−r•) from before.
Finally, for the terms with the second power ψ(κ•) and ψ(κR), we evaluate:

rR
2(1 + rR)ψ(κR)[ψ(κR)+1

2r
•ψ(κR)+r•ψ(κ•)]−ψ(κR)2rR

2(1 + rR) ·(1+rR) ≤ rR
2(1 + rR)ψ(κR)[r•ψ(κ•)],

using the fact that r• ≤ rR. Combining rR
2(1+rR)ψ(κR)[r•ψ(κ•)] with the unused term

ψ(κR)(−1
2r

• − 1) from the first power of ψ(κR), the sum is negative since rR
1+rRψ(κ•) < 1.

Thus the coefficient in front of D is strictly negative. This shows D(κR) > 0. Finally, dαM

dψ(κ)

has the same sign as dαM

dκ
since ψ(κ) is strictly increasing in κ. Hence, we get α′

E→R(κR) > 0
as desired.

A.5 Proof of Proposition 2

Proof. We will show that in every linear equilibrium: (i) for each g ∈ {R,E}, the inferred
elasticity under κg is 1+ψ(κ•)

1+ψ(κg)r
•; (ii) for each g ∈ {R,E}, αg→g = γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κg) )

;

(iii) the equilibrium fitness of group g is weakly higher than that of group g′ if and only if
κg ≤ κg′ .

Take L as in Lemma 3. In any linear equilibrium, by Lemma 3, group g agents infer
elasticity rINFi (αg→g, αg→g;κ•, κg, r

•) = αg→g+αg→gψ(κ•)
αg→g+αg→gψ(κg)r

• = 1+ψ(κ•)
1+ψ(κg)r

•, proving (i).

Given this belief, we must have αg→g =
γ− 1

2
1+ψ(κ•)
1+ψ(κg) r

•ψ(κg)αg→g

1+ 1+ψ(κ•)
1+ψ(κg) r

• by Lemma 2. Rearranging

yields αg→g = γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

, proving (ii).
From Lemma 2, the objective expected utility of each player when both play the strategy

profile αsymm is E[s2
i ] ·

(
αsymmγ − 1

2r
•α2

symm − 1
2r

•ψ(κ•)α2
symm − 1

2α
2
symm

)
. This function is

strictly concave and quadratic in αsymm that is 0 at αsymm = 0. Therefore, it is strictly
decreasing in αsymm for αsymm larger than the team solution αTEAM that maximizes this
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expression, given by the first-order condition

γ − r•αTEAM − r•ψ(κ•)αTEAM − αTEAM = 0 ⇒ αTEAM = γ

1 + r• + r•ψ(κ•) .

For any value of κ ∈ [0, 1], using the fact that ψ(0) > 0 and ψ is strictly increasing,

γ

1 + r•

2 (1 + ψ(κ•)) + r•

2 (1+ψ(κ•)
1+ψ(κ) )

>
γ

1 + r•

2 (1 + ψ(κ•)) + r•

2 (1 + ψ(κ•)) = αTEAM .

Also, γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

is a strictly increasing function in κ, since ψ is strictly increasing.
We therefore conclude that each player’s utility when they play γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

against
each other is strictly decreasing in κ, proving (iii).

A.6 Proof of Proposition 3

Proof. Take L as in Lemma 3. Consider the more general case where residents have flexible
models with the (mis)perception κR. Let rR be their belief about the price elasticity in linear
equilibrium, which is not affected by the entrants’ behavior. In particular, if κR = κ•, then
rR = r•. Suppose the entrant has the dogmatic model with fixed parameters κE, rR, (σζ,R)2

for some κE ∈ [0, 1]. Following the same steps of the proof of Proposition 1, there exists
exactly one linear equilibrium, and it involves residents playing γ

1+rR+ 1
2 rRψ(κR) against each

other and believing price elasticity to be rR.
For the first claim of the proposition, suppose κR ≤ κ• and κE ≥ κR. We begin by showing

that the equilibrium strategy that the entrants use against residents is strictly decreasing in
κE.

Consider a linear equilibrium where in the matches between entrants and residents, the
entrants use αE and the residents use αR. By Lemma 2, the best response function of the
residents and the entrants imply that

αR =
γ − 1

2rRψ(κR)αE
1 + rR

and
αE =

γ − 1
2rRψ(κE)αR
1 + rR

.
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Making the substitution αR = γ− 1
2 rRψ(κR)αE

1+rR in the expression for αE, we find that the value
of αE is pinned down by

αE =
γ − 1

2rRψ(κE)
[
γ− 1

2 rRψ(κR)αE
1+rR

]
1 + rR

.

Multiplying both sides by (1 + rR)2 and rearranging, we get:

αE =
γ(1 + rR − 1

2rRψ(κE))
(1 + rR)2 − 1

4(rR)2ψ(κE)ψ(κR) .

So, dαE
dκE

has the same sign as:

−1
2rRγψ

′(κE)
[
(1 + rR)2 − 1

4(rR)2ψ(κE)ψ(κR)
]
+γ(1+rR− 1

2rRψ(κE)) · 1
4(rR)2ψ′(κE)ψ(κR).

(3)
We note that

(1 + rR)2 − 1
4(rR)2ψ(κE)ψ(κR) ≥ (1 + rR)2 − 1

4(1 + rR)2ψ(κE)ψ(κR)

≥ 3
4(1 + rR)2

since ψ(κE), ψ(κR) ≤ 1. Also, we have

γ(1 + rR − 1
2rRψ(κE)) · 1

4(rR)2ψ′(κE)ψ(κR) ≤ γ(1 + rR) · 1
4(rR)2ψ′(κE)ψ(κR)

≤ 1
4γ(1 + rR)2(rR)ψ′(κE)ψ(κR)

≤ 1
4γ(1 + rR)2(rR)ψ′(κE),

again using the fact that ψ(κR) ≤ 1. Therefore, the expression in Equation (3) is no larger
than

−1
2rRγψ

′(κE) · 3
4(1 + rR)2 + 1

4γ(1 + rR)2(rR)ψ′(κE) = γψ′(κE)rR(1 + rR)2 · (−1
8 ) < 0,

since γ, ψ′(κE), rR are all strictly positive. Thus we conclude dαE
dκE

< 0 for every κE ∈ [0, 1].
Next, consider the function Ūi(αi) (for the case of residents having the correlation
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perception κR) defined in the proof of Proposition 1, which describes an agent’s objective
expected utility from playing αi when their opponent plays a subjective best response to αi
under the beliefs (κR, rR). The fitness of entrants with misperception κE is Ūi(αE(κE)), so
combined with the fact that dαE

dκE
< 0, to establish the first claim of the proposition we just

need to show that Ū ′
i(αi) is strictly positive for all αi ≤ αRR, where αRR is the equilibrium

strategy that the residents use against each other. The arguments in the proof of Proposition
1 show that Ū ′

i(αi) has the same sign as

γ · (1 − 1
2r

•ψ(κ•) 1
1 + rR

) + αi · [12r
•ψ(κ•)rRψ(κR)

1 + rR
− r• − 1].

This expression is linear in αi. The proof of Proposition 1 shows that it is strictly positive
when αi = αRR. When αi = 0, this expression is equal to γ · (1 − 1

2r
•ψ(κ•) 1

1+rR ), which is
also strictly positive since 1

2r
•ψ(κ•) 1

1+rR ≤ 1/2 (as we know from Lemma 3, rR ≥ r• when
κR ≤ κ•). So this expression is always strictly positive for every αi ∈ [0, αRR], which shows
Ū ′
i(αi) > 0 for all αi ≤ αRR.

Next, we turn to αE→E(κ) with assortative matching. Using the expression for αBRi in
Lemma 2, we find that αE→E(κ) = γ

1+rR+ 1
2 rRψ(κ) . Since ψ′

> 0, we have αE→E(κ) is strictly
larger than αR→R = γ

1+rR+ 1
2 rRψ(κR) when κ < κR. From the proof of Proposition 2, we know

that objective payoffs in the stage game are strictly decreasing in linear strategies larger than
the team solution αTEAM = γ

1+r•+r•ψ(κ•) . Since αE→E(κ) > αR→R > αTEAM , we conclude the
entrants with κE = κl have strictly lower fitness than residents with κR in the unique linear
equilibrium with assortative matching for any κl < κR. This argument establishes the second
claim.

A.7 Proof of Proposition 4

Proof. Fix any arbitrary entrant misperception κ. We define αSLi and αSF−i to be the (objective)
Stackelberg leader and follower strategies under the true parameters. That is, αSLi solves
maxαi Ui(αi, αBR−i (αi;κ•, r•);κ•, r•) where αBR−i (αi;κ•, r•) is the rational best response against
αi, and αSF−i = αBR−i (αSLi ;κ•, r•). Using the expression for the αBR−i function from Lemma 2,
we get:

37



αSLi = γ(2(1 + r•) − ψ(κ•)r•)
2 + 2r•(2 + r•) − ψ(κ•)2(r•)2

αSF−i = γ

1 + r• − 1
2α

SL
i ψ(κ•) r•

1 + r• .

Note that αSLi > 0 since ψ(κ•) < 1; we also have αSF−i = γ
2(1+r•)

(
2 − (2(1+r•)−ψ(κ•)r•)ψ(κ•)r•

2+2r•(2+r•)−ψ(κ•)2(r•)2

)
>

0. Following the same steps as in Lemma 3, when i uses αSLi and −i uses αSF−i , then i with
misperception κ and α̂−i misinfers:

r̂ = r•α
SL
i + αSF−i ψ(κ•)
αSLi + α̂−iψ(κ) .

When paired with an appropriate misinference of (σ•
ζ )2, this misinference is self-confirming.

We show that there is some α̂−i such that r̂ induces the entrant to follow the Stackelberg
strategy. Again by Lemma 2, we have:

αBRi (α̂−i;κ; r•α
SL
i + αSF−i ψ(κ•)
αSLi + α̂−iψ(κ) ) =

γ − 1
2ψ(κ)r•(αSLi + αSF−i ψ(κ•)) α̂−i

αSLi +α̂−iψ(κ)

1 + r• α
SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ)

We show that (1) as α̂−i → ∞, αBRi (α̂−i;κ; r• α
SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) ) > αSLi , and that (2) as α̂−i → 0,

αBRi (α̂−i;κ; r• α
SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) ) < αSLi . Continuity of αBRi (α̂−i;κ; r• α

SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) ) in α̂−i then

completes the proof of the Proposition, since the intermediate value theorem implies some
α̂−i such that αBRi (α̂−i;κ; r• α

SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) ) = αSLi . At this misperception of α̂−i, there is a

linear equilibrium where, in the matches between an entrant and a resident, the entrant uses
αSLi , the resident uses αSF−i , and the entrant infers r̂ = r• α

SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) which rationalizes the

entrants playing αSLi . Notice that:

lim
α̂−i→∞

αBRi (α̂−i;κ; r•α
SL
i + αSF−i ψ(κ•)
αSLi + α̂−iψ(κ) ) = γ − 1

2r
•(αSLi + αSF−i ψ(κ•))

lim
α̂−i→0

αBRi (α̂−i;κ; r•α
SL
i + αSF−i ψ(κ•)
αSLi + α̂−iψ(κ) ) = γ

1 + r• α
SL
i +αSF−i ψ(κ•)

αSLi
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We first show that γ − 1
2r

•(αSLi + αSF−i ψ(κ•)) > αSLi , which we rewrite as:

γ
(

1 − 1
2

r•

1 + r•ψ(κ•)
)

− αSLi

(
1 + 1

2r
•
)

+ 1
4ψ(κ•)2

(
αSLi

(r•)2

1 + r•

)
> 0.

Multiplying by 2(1 + r•) and substituting in for αSLi gives us that this is equivalent to:

γ((2 + 2r• − r•ψ(κ•)))
2 + 3r• + (r•)2 − 1

2ψ(κ•)2(r•)2 >
γ(2(1 + r•) − ψ(κ•)r•)

2 + 2r•(2 + r•) − ψ(κ•)2(r•)2 ,

Or:

r• + (r•)2 >
1
2ψ(κ•)2(r•)2.

Since ψ(κ•) ≤ 1 and r• > 0, this inequality holds.
For the α̂−i → 0 limit, using that αSLi > 0, to show that as α̂−i → 0, αBRi (α̂−i;κ; r• α

SL
i +αSF−i ψ(κ•)
αSLi +α̂−iψ(κ) ) <

αSLi it suffices to show:

γ < αSLi (1 + r•) + r•αSF−i ψ(κ•).

Substituting in for αSF−i shows that the right hand side is equal to:

αSLi (1 + r•) + r•
(

γ

1 + r• − 1
2α

SL
i ψ(κ•) r•

1 + r•

)
ψ(κ•).

Note, however, that:
(

1 + r• − 1
2ψ(κ•)2 (r•)2

1 + r•

)
· 2(1 + r•) = 2 + 2r•(2 + r•) − ψ(κ•)2(r•)2,

where the right hand side is the denominator of αSLi . Therefore, it suffices to show that:

γ < r•ψ(κ•) γ

1 + r• + γ(2(1 + r•) − ψ(κ•)r•)
2(1 + r•) .

Multiplying both sides by 2(1 + r•) reduces this expression to:

0 < γψ(κ•)r•,

which holds due to the assumptions on the parameters, thus completing the proof.
Thus, we have that there exists an equilibrium where (i) entrants assume residents play
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some strategy α̂−i, and make inferences about r̂ accordingly, and (ii) residents, in turn, play
αSF−i while entrants play αSLi . We now consider the possible existence of another equilibrium,
when the entrant assumes the resident’s strategy is given by the previously derived α̂−i.
Denote:

α•
−i(αi) :=

γ − 1
2r

•ψ(κ•)αi
1 + r•

as the (rational) resident’s best reply to the entrant. We have the entrant inference, in
general, is:

r̂ = r•αi + α•
−i(αi)ψ(κ•)

αi + α̂−iψ(κ) .

The best reply condition yields:

αi + αir̂ = γ − 1
2 r̂ψ(κ)α̂−i.

We substitute in for r̂ and then multiply by the denominator, yielding:

αi(αi+α̂−iψ(κ))+αir•(αi+α•
−i(αi)ψ(κ•)) = γ(αi+α̂−iψ(κ))−1

2r
•(αi+α•

−i(αi)ψ(κ•))ψ(κ)α̂−i.

We consider the function:

H̃(αi) = αi(αi+α̂−iψ(κ))+αir•(αi+α•
−i(αi)ψ(κ•))−γ(αi+α̂−iψ(κ))+1

2r
•(αi+α•

−i(αi)ψ(κ•))ψ(κ)α̂−i.

Note that this function is quadratic, which follows from inspection and the observation that
α•

−i(αi) is linear in αi. We also note that this function is convex, since

H̃ ′′(αi) = 2(1 + r• − 1
2

(r•)2

1 + r•ψ(κ•)2) > 0,

where the inequality holds since 2(1 + r•)2 > (r•)2ψ(κ•)2. We claim that it has a unique
positive root. To show this, we evaluate this expression at αi = 0, which after substituting in
for α•

−i(0) = γ
1+r• , reduces to:
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H̃(0) = γ(−1 + 1
2

r•

1 + r•ψ(κ•))ψ(κ)α̂−i < 0.

Therefore, since H̃(αi) is a convex quadratic function which is negative at αi = 0, there
can only be at most one positive root. It follows that given the entrant’s misspecification,
there is a unique equilibrium.

We now consider the setting where the entrant is dogmatic about κ and believes r = r•.
In this case, a fixed perception about the opponent’s strategy as α̂−i yields a unique best
reply by Lemma 2—in particular, the entrant has a unique best reply by assumption in
this case, and hence so does the resident. Furthermore, since there is no inference, it is
immediate to calculate limα̂−i→0 α

BR
i (α̂−i;κ; r•) = γ

1+r• and limα̂−i→∞ αBRi (α̂−i;κ; r) < 0.
Since αBRi (α−i;κ, r) is linear in α−i, we therefore have a unique value of α̂−i > 0 such that
αBRi (α̂−i;κ, r•) = αSLi since αSLi < γ

1+r• ; while this claim follows from algebra, it also follows
more succinctly from the observation that αSF−i > 0 and that αBRi (α−i;κ, r•) is decreasing in
α−i. Thus, we have that a resident with dogmatic κ can invade against the correctly specified
resident in the absence of the learning channel as well.

A.8 Proof of Proposition 5

Proof. For the second claim, we know by Proposition 1 that for every r• > 0, we can find
some κ̄ > κ• so that there is a unique linear equilibrium for κE ∈ (κ•, κ̄], and furthermore
entrants have strictly higher fitness than residents in this equilibrium. Take the minimum
across such κ̄ for the M different values of rm > 0 in the M markets, and an entrant model
with this value of correlation misperception strictly outperforms the residents in every market.

For the first claim, first note that in a market with true price elasticity r•, by the proof of
Proposition 1 the correctly specified residents have correct beliefs in every linear equilibrium,
and their equilibrium fitness is also uniquely determined. Also, using the subjective best
response function from Lemma 2, the strategies profile (αE, αR) played between entrants with
the perception (r̂, κ̂) and the residents in any linear equilibrium must satisfy αE = γ− 1

2 r̂ψ(κ̂)αR
1+r̂

and αR = γ− 1
2 r

•ψ(κ•)αE
1+r• . Making the substitution for αR in the expression for αE, we find that

αE is uniquely determined by the linear equation

αE =
γ − 1

2 r̂ψ(κ̂)[γ− 1
2 r

•ψ(κ•)αE
1+r• ]

1 + r̂
.
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This shows the linear equilibrium payoff of the entrants is uniquely determined by (r•, r̂, κ̂)
and is continuous in these parameters.

The goal is to find an environment with two markets with r1 ≈ 0, r2 = 2, ϕ1 ≈ 1, ϕ2 ≈ 0
such that the rational resident model is resistant to invasion from any dogmatic model.
Toward this end, first note that a dogmatic entrant model with the perception r̂ = 0 (and
any perception of κ) always uses the strategy αi = γ in linear equilibrium, so the resident
will choose γ− 1

2 2·ψ(κ•)γ
3 = γ(1−ψ(κ•)

3 ). In a market with r• = 2, such a model gets the payoff

E[s2
i ]
(
γ2

2 − γ2
(

1 + 1 − ψ(κ•)
3

))
.

This payoff is strictly negative since ψ(κ•) > 0. Since linear equilibrium payoffs are continuous
in the entrant’s perceptions (r̂, κ̂), we may find sufficiently small r > 0 so that for every
dogmatic entrant model with r̂ ∈ [0, r] and every κ̂ ∈ [0, 1], the entrant has a strictly negative
equilibrium payoff in the market with r• = 2.

Now, consider a market with r• = 0. The rational resident always chooses αR = γ and
this strategy is strictly dominant. A dogmatic entrant model with perceptions (r̂, κ̂) chooses
αE = γ− 1

2 r̂ψ(κ̂)γ
1+r̂ in linear equilibrium. Find a small enough x > 0 so that xγ − 1

2x
2 < 1

4γ
2. Set

r̄ > r so that γ
1+r̄ = x. For any perception r̂ ≥ r̄, the entrant’s strategy is γ− 1

2 r̂ψ(κ̂)γ
1+r̂ ≤ γ

1+r̂ ≤
γ

1+r̄ = x, so their payoff is no larger than xγ − 1
2x

2 < 1
4γ

4. This is less than half of the payoff
of the rational residents, who choose strategy γ and get 1

2γ
2.

Let c0 > 0 be the rational residents’ payoff when r• = 0, let c2 > 0 be the rational residents’
payoff when r• = 2, and let cs > 0 be the Stackelberg payoff against the rational model when
r• = 2. For every r ∈ [r, r̄] and κ ∈ [0, 1], let ξ(r, κ) be the linear equilibrium payoff of the
dogmatic entrant model with perceptions r, κ. We have cs > c2 but ξ(r, κ) < c0 for every
r ∈ [r0, r1], κ ∈ [0, 1]. So, there exists some ϵr,κ > 0 so that ϵr,κ · cs + (1 − ϵr,κ) · ξ(r, κ) =
ϵr,κ · c2 + (1 − ϵr,κ) · c0 for every r ∈ [r0, r1], κ ∈ [0, 1]. Finally, there is some ϵ′ > 0 so that
ϵ′ ·cs+(1− ϵ′) · (c0/2) < ϵ′ ·c2 +(1− ϵ′) ·c0. We have that minr∈[r0,r1],κ∈[0,1] ϵr,κ > 0 since ξ(r, κ)
is continuous, so we can find some positive ε < min{minr∈[r0,r1],κ∈[0,1] ϵr,κ, ϵ

′} with the property
that in a heterogeneous markets environment with r1 = 0, r2 = 2, ϕ1 = 1 − ε, ϕ2 = ε, the
rational resident model’s weighted average payoff is strictly larger than that of any dogmatic
entrant model with any perception (r, κ), and in particular any dogmatic entrant model with
perception r > r̄ has weighted average payoff no larger than 3

4c0.
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Finally, we can find a small enough δ > 0 so that in a heterogeneous markets environment
with r1 = δ, r2 = 2, ϕ1 = 1 − ε, ϕ2 = ε, we have (i) the rational resident model’s weighted
average payoff is strictly larger than that of any dogmatic entrant model with any perception
(r, κ) with r ∈ [0, r̄] and (ii) any dogmatic entrant model with perception r > r̄ has weighted
average payoff no larger than 3.1

4 c0, which is in particular lower than the fitness of the rational
resident model.

A.9 Proof of Proposition 6

For any given values of the parameters θ, r, σ2
ζ , an agent’s belief about the joint distribution

of (si, ω) does not depend on κ. So, it is an equilibrium for an agent whose model satisfies
the hypotheses of the proposition to use the objectively optimal strategy in the monopoly
market and infer r̃i = r•, σ̃2

ζ,i = (σ•
ζ )2. We now show there is no equilibrium where the agent

makes wrong inferences about r, σ2
ζ or chooses a different strategy. By the same argument

as in the proof of Lemma 2, given the correct belief θ = 0 and any beliefs about κ, r, σ2
ζ ,

the subjectively optimal q∗
i following the signal realization si is γ

1+2rsi. This means in any
equilibrium where the agent infers ri, they must choose the linear strategy αi = γ

1+2r . Given
this strategy (which in particular has αi > 0), the agent can set KL divergence to zero using
the correct inferences r̃i = r•, σ̃2

ζ,i = (σ•
ζ )2, but KL divergence is strictly positive for any other

inference. This implies beliefs are correct and strategy is optimal in any equilibrium.

A.10 Proof of Proposition 7

Consider an agent i with beliefs θ and r who has the signal realization si. Their expected
payoff from choosing quantity qi is:

qiE[θ + ω − rqi + ζ | si] − 1
2q

2
i = qi · [θ + γsi − rqi] − 1

2q
2
i

Taking FOC in qi, we find that the subjectively optimal q∗
i following the signal realization

si is θ
1+2r + γ

1+2rsi. (The second-order condition is satisfied provided r > −1/2.) If the agent
has dogmatic misperception of r ≥ 0, then their equilibrium strategy has a wrong slope
and they do not play the optimal qi for any (except possibly one) si. If the agent has a
misperception of θ, then for any inference r ≥ 0, their equilibrium strategy either has a wrong
intercept or a wrong slope, so they again do not play the optimal qi for any (except possibly
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one) si. This shows that in any equilibrium, a model with a fixed and wrong r or a fixed and
wrong θ must lead to a strict loss in expected utility.

A.11 Proof of Proposition 8

Proof. Consider the society where ΘR = ΘE = Θ(κ•), where ΘR is the resident model and ΘE

is the entrant model. For any linear equilibrium with behavior (σR→R, σR→E, σE→R, σE→E) and
beliefs µR ∈ ∆(ΘR) and µE ∈ ∆(ΘE), there exists another linear equilibrium (σ′

R→R, σ
′
R→E, σ

′
E→R, σ

′
E→E)

where σ′

g,g′ = σR→R for all g, g′ ∈ {A,B} and all agents have the belief µR. The uniqueness
of linear equilibrium from Assumption 1 implies αR→E(κ•) = αE→R(κ•) = αE→E(κ•) =
αR→R(κ•) = α•.

Now consider the society where ΘE = Θ(κ). By assumption, there exists a linear
equilibrium where αR→R(κ) = αR→R(κ•). Since we also take it to be unique, we must in
fact have αR→R(κ) = αR→R(κ•) for all κ, so the fitness of model Θ(κ•) in the unique linear
equilibrium is

E• [E• [u•
1(α•s1, α

•s2, ω) | s1]] .

Given λ and entrant model Θ(κ), the entrant’s fitness in the unique linear equilibrium is

E• [E• [(1 − λ)u•
1(αE→R(κ)s1, αR→E(κ)s2, ω) + (λ)u•

1(αE→E(κ)s1, αE→E(κ)s2, ω) | s1]] .

Differentiate and evaluate at κ = κ•. At κ = κ•, agents with models ΘR and ΘE have the
same fitness since they play the same strategies. So, a non-zero sign on the derivative would
give the desired susceptibility to invasion from models with either slightly higher or slightly
lower κ. This derivative is:

E•

E•

 ∂u•
1

∂q1
(α•s1, α

•s2, ω) · [(1 − λ)α′
E→R(κ•) + λα

′
E→E(κ•)] · s1

+∂u•
1

∂q2
(α•s1, α

•s2, ω) · [(1 − λ)α′
R→E(κ•) + λα

′
E→E(κ•)] · s2

∣∣∣∣∣∣ s1

 .
Using the interim optimality part of Assumption 1, E•

[
∂u•

1
∂q1

(α•s1, α
•s2, ω) | s1

]
= 0 for every

s1 ∈ S, using the necessity of the first-order condition. The derivative thus simplifies as
claimed.
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B More General Population Sizes and Matching Assor-
tativities

In this section, we discuss an extension to the baseline environment where entrants can
make up a positive share of the population and matching can be neither perfectly uniform
nor perfectly assortative. One complication with this more general environment is that no
linear equilibrium as we defined earlier in this paper may exist, since there may not be
any belief about the free parameters that fully explains the distribution of consequences
observed in matches against both groups of opponents. Instead, we adopt the solution concept
of equilibrium zeitgeist from He and Libgober (2024), where agents make the best-fitting
inference in terms of minimizing Kullback–Leibler divergence (KL divergence).

We show that in the special case where the population share of the entrants is zero and the
probability of matching uniformly is either one or zero, the equilibrium zeitgeists in this more
general environment exactly correspond to the linear equilibria in the baseline environment
with uniform or assortative matching, respectively. We also show that provided the share of
entrants is sufficiently near zero and matching assortativity is sufficiently close to uniform
matching or assortative matching, the same results about susceptibility and resistance to
invasion from the baseline model continue to hold. That is, κ• is susceptible to invasion from
projection bias and resistant to invasion from correlation neglect, when the share of entrants
is sufficiently small and matching is sufficiently near uniform matching. On the other hand,
κ• is susceptible to invasion from correlation neglect and resistant to invasion from projection
bias, when the share of entrants is sufficiently small and matching is sufficiently near perfectly
assortative matching.

We consider the same stage game and information structure as in Section 2.1. We
restriction attention to linear strategies and let the space of strategies by parametrized by
A = [0, M̄α] for M̄α < ∞, where αi ∈ [0, M̄α] refers to the strategy that chooses quantity αisi
after every signal si. We view each model as a set Θ of feasible parameter values. For an
agent with a dogmatic model, the model is a singleton set Θ = {(κ̃, r̃, σ̃2

ζ )}. For an agent
with a flexible model who thinks signal correlation is equal to κ̃, the model is given by
Θ = {(κ̃, r, σ̃2

ζ ) : r ∈ [0, M̄r], σ2
ζ ∈ [0, M̄σ2

ζ
]} for some M̄r, M̄σ2

ζ
< ∞.

We have assumed that the space of feasible linear strategies αi ∈ [0, M̄α] and the domain
of inference are compact to guarantee the existence of our solution concept, to be introduced
below. For some of our results, we use the following shorthand.
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Notation 1. A result is said to hold “with high enough price volatility and large enough strategy
space and inference space” if, whenever the strategy space [0, M̄α] has M̄α ≥ 1/σ2

ϵ

1/σ2
ϵ+1/σ2

ω
, there

exist 0 < L1, L2, L3 < ∞ so that for any objective game with (σ•
ζ )2 ≥ L1 and with models

where r ∈ [0, M̄r], σζ ∈ [0, M̄σζ ] are such that M̄2
σζ

≥ (σ•
ζ )2 + L2 and M̄r ≥ L3, the result is

true.
We consider a society with two groups, entrants (E) and residents (R). There is pE ∈ [0, 1]

share of entrants and pR = 1 − pE share of residents in the population. Entrants have model
ΘE and incumbents have model ΘR. We also fix a matching assortativity parameter λ ∈ [0, 1].
Each agent of group g is matched with someone in their group with probability λ+ (1 − λ)pg,
and matched with someone from the other group with the complementary probability. The
setup in the main text of the paper corresponds to the special case of pE = 0, with λ = 0
(uniform matching) or λ = 1 (assortative matching).

We use the solution concept of equilibrium zeitgeist from He and Libgober (2024). We
provide its definition below, specialized to the setting of this particular game.

Definition A.1. For fixed population share (pE, pR) and assortativity λ, an equilibrium
zeitgeist for this game consists of strategies aEE, aER, aRE, aRR and beliefs µE ∈ ΘE and
µR ∈ ΘR, such that:

• For each group g and opponent group g′, the strategy ag,g′ is a subjective best response
against ag′,g given the belief µg.

• For each group g, the belief µg solves

arg min
µ∈Θg

{(λ+ (1 − λ)pg) ·K(µ; ag,g, ag,g) + (1 − λ)(1 − pg) ·K(µ; ag,−g, a−g,g)}

where −g is the group other than g and K(µ; a, a′) refers to the KL divergence from the
expected distribution of consequences under parameters µ to the objective distribution
of consequences, under the strategy profile (a, a′).

Next, we show that equilibrium zeitgeist is an appropriate extension of linear equilibria
into a setting with a non-zero population share of entrants and more general assortativity by
showing that these two solution concepts coincide when pE = 0, λ = 0 or λ = 1. Technically,
a linear equilibrium does not require us to specify strategies used in all types of matches
(we only specify three strategies for linear equilibrium with uniform matching, and only two
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strategies for linear equilibrium with assortative matching). To say that the set of linear
equilibrium is equivalent to the set of equilibrium zeitgeists, we formally mean that every
equilibrium zeitgeist is a linear equilibrium with the appropriate strategies removed, and that
every linear equilibrium can be augmented with some strategies to become an equilibrium
zeitgeist.

We assumed the compactness of the strategy space and the inferences space to ensure
the existence of equilibrium zeitgeists, but we will need to make these compact spaces large
enough to avoid running into corner solutions.

Lemma A.1. Suppose pA = 0 and either λ = 0 or λ = 1. With high enough price volatility and
large enough strategy space and inference space, the set of equilibrium zeitgeists is equivalent
to the set of linear equilibria with uniform matching or assortative matching, respectively.

Proof. Let M̄α ≥ 1/σ2
ϵ

1/σ2
ϵ+1/σ2

ω
be given. Let L1 be defined as L in the proof of Lemma 3. Let L2

be maxκ∈[0,1],0≤αi,α−i≤γ Varκ[ω− 1
2r

•α−is−i | si] + (σ•
ζ )2, which, by the arguments in the proof

of Lemma 3, is finite and independent of si. And let L3 be maxκ∈[0,1],0≤αi,α−i≤γ r
• αi+α−iψ(κ•)
αi+α−iψ(κ) .

We show that with these choices of L1, L2, L3, the set of equilibrium zeitgeists is equivalent
to the set of linear equilibria.

In any equilibrium zeitgeist, the subjective best response (even if there were no restrictions
on the strategy) to any opponent’s strategy must be a linear strategy with slope in [0, γ], by
Lemma 2. Since M̄α ≥ γ, such best responses are feasible strategies. So, in every equilibrium
zeitgeist, we must have αi, α−i ∈ [0, γ]. By the choice of L2 and L3 and using Lemma 3, there
is a belief that is self-confirming within the model. Hence, all equilibrium zeitgeists must
have self-confirming beliefs. Thus, all equilibrium zeitgeists are linear equilibria.

Conversely, any linear equilibrium must have αi, α−i ∈ [0, γ], so they satisfy αi, α−i ≤ M̄α

in the bounded strategy space. The inferences are within the bounds [0, M̄r] and [0, M̄σζ ] and
are self-confirming, so their KL divergence cannot be further reduced. So linear equilibria are
equilibrium zeitgeists.

Finally, we show that Proposition 1 and Proposition 2 are robust to small perturbations
in population size and matching assortativity. A useful lemma is that the set of equilibrium
zeitgeists (for any values of M̄α, M̄σζ , M̄r < ∞) is non-empty and upper hemicontinuous in
pE and λ.

Lemma A.2. For any fixed M̄α, M̄σζ , M̄r < ∞, the set of equilibrium zeitgeists in this game
is non-empty and upper hemicontinuous with respect to pE and λ.
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Proof. Propositions A.1 and A.2 from He and Libgober (2024) provide a set of conditions on
the stage game and the models that guarantee the existence and upper hemicontinuity of the
set of equilibrium zeitgeists.

Assumption A.1. A, ΘE, and ΘR are compact, metrizable spaces.

For each group g and µ ∈ Θg, let Ug(a, a′;µ) be subjective expected utility under belief µ
and strategy profile (a, a′).

Assumption A.2. UE, UR are continuous.

Assumption A.3. For every µ ∈ ΘA ∪ ΘB and ai, a−i ∈ A, K(µ; ai, a−i) is well-defined and
finite.

Under Assumption A.3, we have the well-defined functions KE : ΘE × A2 → R+ and
KR : ΘR × A2 → R+, where Kg(µ; ai, a−i) = K(µ; ai, a−i).

Assumption A.4. KA and KB are continuous.

Assumption A.5. A is convex and, for all a−i ∈ A and µ ∈ ΘE ∪ ΘR, ag 7→ Ug(ag, a−g;µ)
is quasiconcave.

We now show that these assumptions hold.
Assumption A.1 holds as A, ΘE,ΘR are compact due to the finite bounds M̄α, M̄r, M̄σζ .

Also, from Lemma 2, the expected utility from playing αi against α−i in a model with
parameters (r̂, κ, σ2

ζ ) is E[s2
i ] ·

(
αiγ − 1

2 r̂α
2
i − 1

2 r̂ψ(κ)αiα−i − 1
2α

2
i

)
. This is a continuous

function in (αi, α−i, r̂) and strictly concave in αi. Therefore Assumptions A.2 and A.5 are
satisfied.

To see the finiteness and continuity of the K functions, first recall that the KL divergence
from a true distribution N (µ1, σ

2
1) to a different distribution N (µ2, σ

2
2) is given by ln(σ2/σ1)+

σ2
1+(µ1−µ2)2

2σ2
2

− 1
2 . Under own play αi, opponent play α−i, correlation parameter κ, elasticity r̂

and price idiosyncratic variance σ2
ζ , the expected distribution of price after signal si is

−1
2 r̂αisi + (ω − 1

2 r̂α−is−i | si, κ) + ζ̂

where the first term is not random, the middle term is the conditional distribution of
ω− 1

2 r̂α−is−i given si, based on the joint distribution of (ω, si, s−i) with correlation parameter
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κ. The final term is an independent random variable with mean 0, variance σ2
ζ . The analogous

true distribution of price is

−1
2r

•αisi + (ω − 1
2r

•α−is−i | si, κ•) + ζ•

where ζ• is an independent random variable with mean 0, variance (σ•
ζ )2. For a fixed κ, we

may find 0 < σ2 < σ̄2 < ∞ so that the variances of both distributions lie in [σ2, σ̄2] for all
si ∈ R, αi, α−i ∈ [0, M̄α], r̂ ∈ [0, M̄r]. First note that as a consequence of the multivariate
normality, the variances of these two expressions do not change with the realization of si.
The lower bound comes from the fact that Varκ(ω − 1

2 r̂α−is−i | si) is nonzero for all α−i, r̂ in
the compact domains and it is a continuous function of these two arguments, so it must have
some positive lower bound σ2 > 0. For a similar reason, the variance of the middle term has a
upper bound for choices of the parameters α−i, r̂ in the compact domains, and the inference
about σ2

ζ is also bounded.
The difference in the means of the two distributions is no larger than si · [1

2(M̄r + r•) · 1 +
1
2(M̄r + r•) · 1 · (ψ(κ) + ψ(κ•))]. Thus consider the function

h(si) := ln(σ̄/σ) + 1
2(σ̄2/σ2) +

[1
2(M̄r + r•) · 1 + 1

2(M̄r + r•) · 1 · (ψ(κ) + ψ(κ•))]2

2σ2 s2
i − 1

2 .

That is h(si) has the form h(si) = C1 + C2s
2
i for constants C1, C2. It is absolutely integrable

against the distribution of si, and it dominates the KL divergence between the true and ex-
pected price distributions at every si and for any choices of αi, α−i ∈ [0, M̄α], r̂ ∈ [0, M̄r], σ2

ζ ∈
[0, M̄ζ ]. This shows KE, KR are finite, so Assumption A.3 holds. Further, since the KL
divergence is a continuous function of the means and variances of the price distributions,
and since these mean and variance parameters are continuous functions of αi, α−i, r̂, σ

2
ζ , the

existence of the absolutely integrable dominating function h also proves KA, KB (as integrals
of KL divergences across different si) are continuous, so Assumption A.4 holds.

Proposition A.1. Fix r• > 0, κ• ∈ [0, 1]. For any given κE ≠ κR, with high enough price
volatility and large enough strategy space and inference space, there exists ϵ > 0 with the
property that for any pE ≤ ϵ and any λ ≥ 1 − ϵ, in every equilibrium zeitgeist with flexible
models ΘE and ΘR the residents have strictly higher expected utility than the entrants if
κE < κR and the residents have strictly lower expected utility than the entrants if κE > κR.

Also, with high enough price volatility and large enough strategy space and inference space,
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there exist κ < κ• < κ̄ so that:

1. For any κ ∈ [κ, κ•), we may find ϵ > 0 with the property that for any pE ≤ ϵ and any
λ ≤ ϵ, in every equilibrium zeitgeist with flexible models ΘE and ΘR where (κR, κE) =
(κ•, κ), the residents have strictly higher expected utility than the entrants.

2. For any κ ∈ (κ•, κ̄], we may find ϵ > 0 with the property that for any pE ≤ ϵ and any
λ ≤ ϵ, in every equilibrium zeitgeist with flexible models ΘE and ΘR where (κR, κE) =
(κ•, κ), the residents have strictly lower expected utility than the entrants.

Proof. For the first part, set pE = 0 and λ = 1. For any M̄α ≥ 1/σ2
ϵ

1/σ2
ϵ+1/σ2

ω
, by Lemma A.1

find L1, L2, L3. For any (σ•
ζ )2 ≥ L1, M̄2

(σζ) ≥ (σ•
ζ )2 + L2 and M̄r ≥ L3, Lemma A.1 implies

that the set of equilibrium zeitgeists is equivalent to the set of linear equilibria. But the
proof of Proposition 2 shows that in every such linear equilibrium, the residents have strictly
higher expected utility than the entrants if κE < κR and the residents have strictly lower
expected utility than the entrants if κE > κR. The same strict inequality then holds for the
set of equilibrium zeitgeists. Since the set of equilibrium zeitgeists is upper hemicontinuous
in pE and λ by Lemma A.2, the same must also be true for pE close enough to 0 and λ close
enough to 1.

For the second part, set pE = 0 and λ = 0. For any M̄α ≥ 1/σ2
ϵ

1/σ2
ϵ+1/σ2

ω
, by Lemma A.1 find

L1, L2, L3. For any (σ•
ζ )2 ≥ L1, M̄2

(σζ) ≥ (σ•
ζ )2 + L2 and M̄r ≥ L3, Lemma A.1 implies that

the set of equilibrium zeitgeists is equivalent to the set of linear equilibria. Use the values
of κ, κ̄ from Proposition1. The proof of Proposition 1 shows that for any κ ∈ [κ, κ•), in the
unique linear equilibrium with (κR, κE) = (κ•, κ) the residents have strictly higher expected
utility than the entrants. The same strict inequality then holds for the set of equilibrium
zeitgeists. Since the set of equilibrium zeitgeists is upper hemicontinuous in pE and λ by
Lemma A.2, the same must also be true for pE close enough to 0 and λ close enough to 0.
The analogous argument applies for the case of κ ∈ (κ•, κ̄].
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