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Abstract

We study misperceptions of private-signal correlation in a setting where a population
repeatedly matches up to play an incomplete-information Cournot duopoly game. We
show that a misperception’s viability can depend on whether agents hold flexible
or dogmatic beliefs about price elasticity. If agents have flexible beliefs and learn
elasticity by observing prices, correlation misperceptions indirectly distort behavior
through elasticity misinference. If agents dogmatically know elasticity with certainty,
this learning channel is eliminated. The direct and indirect effects of correlation
misperception on behavior oppose each other, implying that the possibility of elasticity
inference can reverse an error’s viability.
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1 Introduction

In strategic situations where players face uncertainty over the state of nature, agents’ behavior
can depend on both their beliefs over the state (i.e., first-order beliefs) and their beliefs
over other players’ information (i.e., higher-order beliefs). But, significant evidence suggests
economic actors often find it difficult to form accurate higher-order beliefs or detect systematic
biases in them. This paper investigates mistaken higher-order beliefs from an evolutionary
perspective, asking which errors might confer an advantage and when.

Our main message is that whether a given misperception in higher-order beliefs over a
payoff-relevant state improves or harms payoffs can depend on whether other, persistent
parameters of the game are known or inferred. A higher-order misperception can directly
affect the agent’s action by influencing their conjecture of opponent behavior. But more
subtly, when the agent does not know the persistent game parameters and must infer them
through repeated play, the same mispredictions about opponents’ behavior cause the agent
to misinterpret game outcomes. This misinference induces distorted beliefs about the game
parameters, possibly letting the agent commit to strategically beneficial behavior. So, in
addition to its direct effect, higher-order misperceptions can distort behavior indirectly
through this learning channel. Given that errors can have opposite direct and indirect
effects on behavior, an agent’s knowledge about the persistent parameters (and thus whether
the learning channel is present) can determine whether the error facilitates such beneficial
commitments.

We illustrate this idea in the context of a linear-quadratic-normal (LQN) Cournot duopoly
game of incomplete information, similar to Vives (1988).1 The state is the intercept of the
demand curve (i.e., demand shock), drawn i.i.d. from a normal distribution each time the
game is played, with players receiving possibly correlated signals before choosing actions.
The key persistent game parameter is the slope of the demand curve (i.e., price elasticity),
which players may or may not know. Setups within the LQN family have received significant
attention in part because they admit tractable comparative statics with respect to players’
information (illustrated in Bergemann and Morris (2013), as well as Miyashita and Ui (2023);
Bergemann, Heumann, and Morris (2017)). Here, we use this setup to study misperceptions
regarding the signals others observe.

1This model is extended to more general structures by Angeletos and Pavan (2007). We explain how our
results generalize in the Supplemental Appendix.
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To formalize the consequences of higher-order misperceptions, we apply stability concepts
from the literature on the indirect evolutionary approach (surveyed in Alger and Weibull
(2019); Robson and Samuelson (2011)) to such errors. Typically, this approach assumes
individuals are endowed with different subjective preferences over game outcomes. If a “new
preference” leads to higher objective payoffs in equilibrium than an “existing preference” when
the latter is dominant in the society, then we say the former has an evolutionary advantage
and can invade the latter. In our application, a higher-order misperception is equivalent
to a subjective preference only if the agent knows the persistent game parameters. If the
agent is uncertain about these parameters and infers them from outcomes, then the same
misperception can lead to different beliefs about these parameters when the environment
varies, as highlighted in our companion paper He and Libgober (2024b). A recent literature
on misspecified Bayesian learning (Esponda and Pouzo (2016); Frick, Iijima, and Ishii (2024);
Heidhues, Koszegi, and Strack (2018), among others) studies the implications of mislearning
persistent parameters of the environment on behavior and welfare. Our contribution is
to explore how uncertainty about such persistent parameters (that is, the possibility of
mislearning) affects the equilibrium consequences of misperceiving others’ information within
a seminal game.

We consider a society with incumbents who know the true correlation between players’
signals about the i.i.d. demand shocks. If agents are certain about the persistent price
elasticity, then assortative matching (i.e., entrants’ welfare is determined by how they do
when playing against each other) favors entrants who overestimate correlation in different
players’ signals, while uniform matching (i.e., entrants’ welfare is determined by how they
do when playing against incumbents) favors entrants who underestimate said correlation.
However, the situation is exactly reversed when agents do not know price elasticity and learn
from game outcomes. That is, sometimes erroneous higher-order beliefs only benefit agents
who are uncertain about the game’s persistent parameters.

To see the intuition behind this result, consider a duopolist who misperceives signals to
be more correlated than the truth—an error we refer to as projection bias.2 It turns out the
welfare implications of projection bias with uniform matching depend on whether the bias
induces more aggressive strategies in equilibrium — that is, strategies that respond more
to changes in private information. Thus, we examine whether projection bias increases the

2Other papers in economic theory studying the implications of projection bias include Gagnon-Bartsch,
Pagnozzi, and Rosato (2021); Gagnon-Bartsch and Rosato (2024); Madarász (2012).
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aggressiveness of subjective best responses.
On the one hand, the direct effect of projection bias makes the duopolist act less aggres-

sively. When he has a private signal that suggests high market demand, he overestimates the
similarity of the opponent’s information and thus exaggerates how much the other player will
increase their production level. This force limits how much the duopolist wishes to increase
production, since the two firms’ actions are strategic substitutes. The bias thus harms the
duopolist’s profits when he knows price elasticity.

On the other hand, the indirect effect of projection bias through the learning channel
acts in the opposite direction. Suppose this duopolist infers elasticity from prices. Then,
critically, projection bias causes the duopolist to underestimate price elasticity. This is
because the duopolist’s bias leads him to overestimate how steeply the opponent’s production
quantity changes as a function of the duopolist’s signal realization. After a high private
signal, the market price remains higher than the duopolist expects, which he rationalizes by
inferring a low price elasticity. Underinferring price elasticity increases the aggressiveness of
the duopolist’s best response, as he underestimates how quickly the price decreases when he
produces more.

We show that the indirect effect is stronger than the direct effect — intuitively since
elasticity influences strategies much more than perceived signal correlation. However, the
indirect effect is present only when agents are initially uncertain about price elasticity. Putting
everything together, we conclude that projection bias can only invade a rational society when
the entrants draw inferences about price elasticity from outcomes, not when they already
know price elasticity with certainty.

2 Framework

Following the indirect evolutionary approach and our companion paper He and Libgober
(2024b), we study an environment where a continuum of agents are matched up in pairs each
period to play a two-player stage game.

2.1 Stage Game and Information Structure

We first describe the stage game. There is a demand state ω ∼ N (0, σ2
ω), where N (µ, σ2) is the

normal distribution with mean µ and variance σ2. Firm i receives a private signal si = ω+ ϵi,
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and then chooses a quantity qi ∈ R. The resulting market price is P = ω − r• · 1
2(q1 + q2) + ζ,

where ζ ∼ N (0, (σ•
ζ )2) is an idiosyncratic independent price shock. Firm i’s profit is qiP− 1

2q
2
i .

As in many other LQN oligopoly models, market prices and quantity choices may be
positive or negative. To interpret, when P > 0, the market pays for each unit of good
supplied, and the market price decreases in total supply. When P < 0, the market pays for
disposal. The cost 1

2q
2
i represents either a convex production cost or a convex disposal cost,

depending on the sign of qi.
We allow signals to be correlated conditional on ω and study the perception of this

correlation. Recalling that si = ω + ϵi, we assume in particular that:

ϵi = κ•√
(κ•)2 + (1 − κ•)2

z + 1 − κ•√
(κ•)2 + (1 − κ•)2

ηi,

where ηi ∼ N (0, σ2
ϵ ) is the idiosyncratic component generated i.i.d. across players and

z ∼ N (0, σ2
ϵ ) is the common component. Higher κ• leads to an information structure with

higher conditional correlation. When κ• = 0, si and s−i are conditionally uncorrelated given
ω. When κ• = 1, we always have si = s−i. This functional form for ϵi ensures Var(si) is
constant in κ•.

The persistent parameters of the stage game are σ2
ω > 0 (variance of demand state), r• > 0

(a measure of the elasticity of market price with respect to quantity supplied), (σ•
ζ )2 > 0

(variance of price shock), and κ• ∈ [0, 1] (a measure of signal correlation). Each time the stage
game is played, ω, z, ηi and ζ are independently drawn from their respective distributions.

2.2 Models, Inference, and Strategies

The stage game is common knowledge except for parameters κ•, r•, and (σ•
ζ )2. Agents

interpret their environment through their models of the world. A model can have two kinds
of parameters: free parameters are estimated using game outcomes, while fixed parameters
are dogmatically given by the model and not subject to inference. Signal correlation is a fixed
parameter in every model, so different models can encode different dogmatic beliefs about
that aspect of the stage game. We consider both flexible models where signal correlation κ̃ is
a fixed parameter but price elasticity r̃ and price shock variance σ̃2

ζ are free parameters,3 as
3While a flexible model allows agents to infer both r and σ2

ζ , their misinference about r drives the results.
Since each player’s profit is linear in the market price, belief about the variance of the idiosyncratic price
shock does not change their expected payoffs or behavior. The parameter σ2

ζ absorbs changes in the variance
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well as dogmatic models where κ̃, r̃, σ̃2
ζ are all fixed parameters.

Our interest will be in studying misperceptions of signal correlation:

Definition 1. Let κ̃ be a player’s perceived κ. A player exhibits correlation neglect if κ̃ < κ•.
A player exhibits projection bias if κ̃ > κ•.

Correlation neglect agents underestimate the correlation in players’ signals in the stage
game, whereas projection bias agents exaggerate the similarity between others’ information
and their own, overestimating signal correlation. We are agnostic about the origin of these
misspecifications. Instead, we ask whether such misspecifications can invade a rational society.

We now describe inference for flexible models. A consequence is a triple (si, qi, P ) that
contains i’s signal, i’s quantity choice, and the realized market price. A strategy for i is
a quantity choice as a function of i’s signal realization, Qi(si). Let Y denote the set of
all consequences, and let S denote the space of strategies. For each (κ, r, σ2

ζ ), we define
Fκ,r,σ2

ζ
: S × S → ∆(Y) to be the mapping between strategy profiles and the distribution over

i’s consequences in a stage game with parameters (κ, r, σ2
ζ ). We consider the following notion

of free-parameter estimation for a given stage-game strategy profile:

Definition 2. Let F •(Qi, Q−i) denote the objective distribution over i’s consequences given
strategy profile Qi, Q−i. We say that inference (r̃, σ̃2

ζ ) is a self-confirming inference given
strategy profile Qi, Q−i and correlation κ if F •(Qi, Q−i) = Fκ,r̃,σ̃2

ζ
(Qi, Q−i).

Self-confirming inferences are not falsified by the distribution of consequences that a player
sees whenever they perceive correlation κ and repeatedly play the stage game using strategy
Qi against different opponents who all use the strategy Q−i. Self-confirming inferences need
not exist in general, in which case a goodness-of-fit criterion is needed for inferences to be
well-defined. Esponda and Pouzo (2016) motivate KL-divergence as a natural criterion for
misspecified Bayesian agents. But to avoid complications, we focus on true parameter values
such that self-confirming inferences exist.

Next, we present a partial equilibrium notion where both players choose strategies that
maximize utility given their beliefs about the persistent parameters, and said beliefs for
some player i are are either the fixed parameters κ̃, r̃, σ̃2

ζ (if i has a dogmatic model) or fixed
parameter κ̃ together with the self-confirming inferences (if i has a flexible model). The
reason why we do not require −i to also derive beliefs from the same interaction is that there

of market price, creating significant tractability.
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are some environments (i.e., when i is part of a negligible subpopulation) where −i’s beliefs
are primarily shaped by the consequences they observe in other kinds of matches.

Definition 3. A strategy profile Qi, Q−i and belief profile (κ̃i, r̃i, σ̃2
ζ,i), (κ̃−i, r̃−i, σ̃

2
ζ,−i) are a

linear partial equilibrium if

• For each player k, Qk(sk) = αksk for some αk ≥ 0.

• For each player k, Qk is an interim-stage best response against the opponent’s strategy
given belief (κ̃k, r̃k, σ̃2

ζ,k).

• For the first player i, κ̃i is the fixed parameter given by i’s model, and (r̃i, σ̃2
ζ,i) are

either the fixed parameters given by i’s dogmatic model or i’s self-confirming inference
given Qi, Q−i, and κ̃i (when i has a flexible model).

Since the best response (among the family of all strategies) to any linear strategy is linear
for any belief about the correlation parameter and market price elasticity (shown in Lemma
2), we focus on equilibria where everyone uses linear strategies. We sometimes refer to the
linear strategy si 7→ αisi simply as αi.

2.3 Stability and Invasion

Our analysis will compare the entrant model, which is used by an infinitesimally small group
of entrants in the population, with the resident model, which is used by the remaining
group called the residents. We will consider two kinds of interaction structures. In uniform
matching, each agent is matched with an opponent drawn uniformly at random from the
entire population (and agents can observe their opponent’s model). So, agents are only
matched against the entrant group with infinitesimal probability. In assortative matching,
agents are always matched within the group that uses the same model.4

In what follows, we use the subscript R to refer to the resident and the subscript E to
refer to the entrant. For example, κR denotes the resident’s perceived correlation parameter,
and κE denotes that of the entrant. We let αg→g′ denote the strategy that a group g agent
uses when matched against someone from group g′. For strategies αg, α−g in the stage game,

4To avoid technical complications, we assume the entrants form an infinitesimally small group, as in He
and Libgober (2024b). Our previous working paper (He and Libgober, 2024a) uses an alternative approach
where the entrants forms a very small but positive-mass group, which does not change the results.
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let U•(αg, α−g) be the objective expected utility of playing strategy αg against α−g. We refer
to the objective expected utility of agents who use a model as that model’s fitness.

Definition 4. With uniform matching, a linear equilibrium consists of strategies αR→R, αR→E, αE→R

and beliefs (κ̃R, r̃R, σ̃2
ζ,R), (κ̃E, r̃E, σ̃2

ζ,E) such that:

• αR→R, αR→R, (κ̃R, r̃R, σ̃2
ζ,R), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium,

• αE→R, αR→E, (κ̃E, r̃E, σ̃2
ζ,E), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium.

We say κR is resistant to invasion from κE with uniform matching if U•(αR→R, αR→R) ≥
U•(αE→R, αR→E) in every linear equilibrium, and we say κR is susceptible to invasion with
uniform matching if U•(αR→R, αR→R) < U•(αE→R, αR→E) in every linear equilibrium.

With assortative matching, a linear equilibrium consists of strategies αR→R, αE→E and
beliefs (κ̃R, r̃R, σ̃2

ζ,R), (κ̃E, r̃E, σ̃2
ζ,E) such that:

• αR→R, αR→R, (κ̃R, r̃R, σ̃2
ζ,R), (κ̃R, r̃R, σ̃2

ζ,R) are a linear partial equilibrium,

• αE→E, αE→E, (κ̃E, r̃E, σ̃2
ζ,E), (κ̃E, r̃E, σ̃2

ζ,E) are a linear partial equilibrium.

We say κR is resistant to invasion from κE with assortative matching if U•(αR→R, αR→R) ≥
U•(αE→E, αE→E) in every linear equilibrium, and we say κR is susceptible to invasion with
assortative matching if U•(αR→R, αR→R) < U•(αE→E, αE→E) in every linear equilibrium.

This definition embeds the idea that agents with flexible models correctly think that the
values of the persistent game parameters do not change depending on the group membership
of the opponent. In particular, in an environment with uniform matching and with residents
who have flexible models, the residents’ beliefs about the free parameters (r̃R, σ̃2

ζ,R) when
playing against entrants are estimated using the consequences in their matches against other
residents. This feature arises because these residents use all their available data to estimate
the free parameters, and matches against entrants comprise an infinitesimally small portion
of their data.

3 Subjective Best Responses and Self-Confirming In-
ferences

This section presents results characterizing best responses and self-confirming inferences. We
first show that when i sees private signal si, their mean posterior beliefs about the state and
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about opponent’s signal are linear functions of si.

Lemma 1. There exists a strictly increasing function ψ(κ), with ψ(0) > 0 and ψ(1) = 1,
so that Eκ[s−i | si] = ψ(κ) · si for all si ∈ R, κ ∈ [0, 1]. Also, there exists a strictly positive
γ > 0 so that Eκ[ω | si] = γ · si for all si ∈ R, κ ∈ [0, 1].

This result uses the tractability of the LQN framework. The coefficient γ that characterizes
an agent’s inference about the state does not depend on their perception of κ. But higher κ
implies the agent infers more about the opponent’s signal from their signal. In other words,
a misperception of κ only distorts the agent’s higher-order belief about the opponent’s signal
realization (and hence, opponent’s belief), but does not affect the agent’s first-order belief
about the state ω. Linearity of E[ω | si] and E[s−i | si] in si gives us an explicit characterization
of best responses in the stage game, given beliefs about the κ and r parameters:

Lemma 2. For α−i a linear strategy, i’s expected utility from the linear strategy αi given
parameters κ, r, σ2

ζ is Ui(αi, α−i;κ, r) = E[s2
i ] ·

(
αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i

)
. For the

same parameters, the linear strategy αBRi (α−i;κ, r) := γ− 1
2 rψ(κ)α−i

1+r best responds to α−i at the
interim stage among all (possibly non-linear) strategies Qi : R → R.

The key insight of Lemma 2 is that an agent’s subjective expected utility and subjective
best response depend on their beliefs about κ and r, but not σ2

ζ . Call a linear strategy more
aggressive if its coefficient αi ≥ 0 is larger. Lemma 2 says agent i’s subjective best response
function becomes more aggressive when i believes in lower κ or lower r. The intuition for
this was outlined in the introduction. We have ∂αBRi

∂κ
< 0 as the agent can better leverage her

private information about market demand when her rival does not share the same information.
We have ∂αBRi

∂r
< 0 because inelastic demand induces the agent to behave more aggressively,

since prices become less responsive to quantity choices.
Finally, we characterize self-confirming inference given a strategy profile and a correlation

perception.

Lemma 3. There exists some L > 0 such that a unique self-confirming inference exists for
any κ ∈ [0, 1] and 0 ≤ αi, α−i ≤ γ whenever (σ•

ζ )2 ≥ L. The self-confirming inference for
elasticity is rINFi (αi, α−i, ;κ•, κ, r•) := r• αi+α−iψ(κ•)

αi+α−iψ(κ) .

Lemma 3 shows that for agents with flexible models, there is a unique inference of the free
parameters r, σ2

ζ that perfectly matches the observed price distribution for any linear strategy
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profile, provided the true price shock variance is large enough and both agents’ strategies
are less aggressive than γ. Note that by Lemma 2, i’s best response against any αi is always
bounded by γ, given any beliefs κ ∈ [0, 1], r ≥ 0. Therefore, no linear equilibrium exists
where either player uses a strategy αi > γ and we do not need to worry about excessively
aggressive strategies. The self-confirming property always holds in the linear equilibria we
use to define resistance to invasion.

A key lesson of Lemma 3 is that for a fixed strategy profile, misperceiving a higher
signal correlation in the stage game causes the agent to infer a lower price elasticity, as
suggested by the intuition in the introduction. This intuition will drive the interaction
between misspecifications and inference in our main results in the next section.

4 Selecting Biases and the Role of the Learning Channel

We now turn to the selection of correlation perceptions and ask how the answer depends
on whether agents have flexible models or dogmatic models. Throughout, we assume the
true price shock variance exceeds the threshold L from Lemma 3. We first consider uniform
matching with flexible models.

Proposition 1 (Uniform Matching Selects Projection Bias). Fix r• > 0, κ• ∈ [0, 1]. For
(σ•

ζ )2 ≥ L, there exist κ < κ• < κ̄ so that taking (κR, κE) = (κ•, κ) for any κ ∈ [κ, κ̄] and
assuming all agents have flexible models, there is a unique linear equilibrium with uniform
matching. Furthermore, κ• is susceptible to invasion with uniform matching if κ > κ• and
resistant to invasion with uniform matching if κ < κ•.

The intuition for this result follows from the observation that projection bias generates a
commitment to aggression as it leads the biased agents to under-infer market price elasticity. It
is well-known that in Cournot oligopoly games, such commitment can be beneficial (Fershtman
and Judd, 1987). Here, misspecification about signal correlation leads to misinference about
elasticity, which causes the entrants to respond credibly to their opponents’ play in an
overly aggressive manner. The rational residents back down and yield a larger share of
the surplus. However, projection bias is beneficial only in small measure, intuitively since
excessive aggression can lead to overproduction past the point where such commitments are
beneficial. Figure 1a illustrates this non-monotonicity of fitness in κE; while small increases
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(a) Uniform Matching
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(b) Assortative Matching
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Figure 1: Fitness of the flexible entrant model against the correctly specified flexible resident
model, as a function of the entrant model’s perception of κ. The true parameters are κ• = 0.3,
r• = 1, σ2

ω = σ2
ϵ = 1. The dashed vertical line marks the true correlation parameter.

in κ above κ• increases entrant fitness, entrants no longer outperform residents with κ = κ•

once κ is close to one.
By contrast, assortative matching favors biases that lead to more cooperative behavior,

and thus the commitment to aggression is detrimental to fitness. Correspondingly, we obtain
the opposite result.

Proposition 2 (Perfectly Assortative Matching Selects Correlation Neglect). Fix r• > 0 and
(σ•

ζ )2 ≥ L. Assume all agents have flexible models. Then, κR is susceptible to invasion with
assortative matching if κE < κR, and it is resistant to invasion with assortative matching if
κE > κR.

Correlation neglect leads agents with flexible models to over-infer elasticity, enabling commit-
ment to less aggressive behavior. The contrast with uniform matching is illustrated in Figure
1b, where the entrant’s fitness is not only locally decreasing in κ around κ• but monotonic
decreasing for all κ. Let αTEAM denote the symmetric linear strategy profile that maximizes
the sum of the two firms’ expected objective payoffs. The proof of Proposition 2 shows that
among symmetric strategy profiles, players’ payoffs strictly decrease in aggressiveness in
the region α > αTEAM . For assortative matching and any κ ∈ [0, 1], the linear equilibrium
behavior in a group with correlation perception κ strictly increases in aggressiveness as κ
grows, and this equilibrium play is always strictly more aggressive than αTEAM . Lowering
the perception of κ always confers an evolutionary advantage by bringing equilibrium play
closer to αTEAM .

So far, we have discussed the selection of correlation misperceptions when agents have
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flexible models. As mentioned before, the direct effect and the indirect effect of correlation
misperception go in opposite directions. The next result shows that if agents have dogmatic
models and the learning channel is shut down, then the conclusions of Propositions 1 and 2
can be reversed:

Proposition 3. Let κ• ∈ [0, 1], r• > 0, (σ•
ζ )2 ≥ L be given and suppose all agents have

dogmatic models whose fixed parameters about price elasticity and price shock variance
are correct: (r̃, σ̃2

ζ ) = (r•, (σ•
ζ )2). Suppose κR = κ•. There exists ϵ > 0 so that for any

κl, κh ∈ [0, 1], κl < κ• < κh ≤ κ• + ϵ, κR is resistant to invasion from entrants with
κE = κh under uniform matching, and resistant to invasion from entrants with κE = κl under
assortative matching.

Proposition 3 shuts down the learning channel using the assumption of dogmatic and
correct beliefs about r. It implies that in the environments studied in Propositions 1 and 2, the
beneficial misperceptions of κ confer their evolutionary advantage through the indirect effect
of elasticity misinference. This force is stronger than the direct effect of the κ misperception,
but it is only present when agents use flexible models. Thus, whether an error in higher-
order beliefs can persist in a rational society may depend on whether the biased agents are
open-minded or dogmatic about the values of the persistent parameters in the game.

5 Conclusion

The main message of this paper is that whether a misperception in the stage game is likely
to survive can depend on whether agents have dogmatic or flexible views about other aspects
of the stage game. In particular, we have shown that the welfare implications of an error in
higher-order beliefs depend crucially on whether people know price elasticity with certainty or
estimate this elasticity from past prices. Working in a canonical linear-quadratic-normal game
setting, we view our paper as illustrating the practical value of the evolutionary framework
in terms of guiding our thinking about the viability of biases. More broadly, our results
point out that the viability of a given error must be evaluated in the context of other factors,
such as whether agents engage in inference about the stage-game parameters. It may be
worthwhile to investigate other factors that can enhance or hinder the viability of certain
behavioral biases in future work.
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Appendix
A Proof of Lemma 1

Proof. For i ̸= j, rewrite si =
(
ω + κ√

κ2+(1−κ)2
z
)

+ 1−κ√
κ2+(1−κ)2

ηi and sj =
(
ω + κ√

κ2+(1−κ)2
z
)

+
1−κ√

κ2+(1−κ)2
ηj. Note that ω+ κ√

κ2+(1−κ)2
z has a normal distribution with mean 0 and variance

σ2
ω+ κ2

κ2+(1−κ)2σ
2
ϵ . The posterior distribution of

(
ω + κ√

κ2+(1−κ)2
z
)

given si is therefore normal

with a mean of
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )
si and a variance of 1

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )
.

Since ηj is mean-zero and independent of i’s signal, the posterior distribution of sj | si
under the correlation parameter κ is normal with a mean of

1/( (1−κ)2

κ2+(1−κ)2σ
2
ϵ )

1/(σ2
ω + κ2

κ2+(1−κ)2σ2
ϵ ) + 1/( (1−κ)2

κ2+(1−κ)2σ2
ϵ )
si

and a variance of 1
1/(σ2

ω+ κ2
κ2+(1−κ)2 σ

2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

+ (1−κ)2

κ2+(1−κ)2σ
2
ϵ . We thus define

ψ(κ) :=
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

for κ ∈ [0, 1), and ψ(1) := 1. To see that ψ(κ) is

strictly increasing in κ, we have

1/ψ(κ) = 1 +
(1−κ)2

κ2+(1−κ)2σ
2
ϵ

σ2
ω + κ2

κ2+(1−κ)2σ2
ϵ

= 1 + (1 − κ)2σ2
ϵ

(κ2 + (1 − κ)2)σ2
ω + κ2σ2

ϵ

and then we can verify that the second term is decreasing in κ.

As κ → 1, the term 1/( (1−κ)2

κ2+(1−κ)2σ
2
ϵ ) tends to ∞, so

1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/(σ2
ω+ κ2

κ2+(1−κ)2 σ
2
ϵ )+1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

ap-

proaches
1/( (1−κ)2

κ2+(1−κ)2 σ
2
ϵ )

1/( (1−κ)2
κ2+(1−κ)2 σ

2
ϵ )

= 1. We also verify that ψ(0) = 1/σ2
ϵ

(1/σ2
ω)+(1/σ2

ϵ ) > 0.

Finally, for any κ ∈ [0, 1], κ√
κ2+(1−κ)2

z + 1−κ√
κ2+(1−κ)2

ηi has variance σ2
ϵ and mean 0, so

Eκ[ω | si] = 1/σ2
ϵ

1/σ2
ϵ+1/σ2

ω
si. We then define γ as the strictly positive constant 1/σ2

ϵ

1/σ2
ϵ+1/σ2

ω
.
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B Proof of Lemma 2

Proof. Player i’s conditional expected utility given signal si is

αisi · Eκ[ω − 1
2rαisi − 1

2rα−is−i + ζ|si] − 1
2(αisi)2

=αisi · (γsi − 1
2rαisi − 1

2rψ(κ)siα−i) − 1
2(αisi)2

=s2
i · (αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i ).

The term in parenthesis does not depend on si, and the second moment of si is the same
for all values of κ. Therefore this expectation is E[s2

i ] ·
(
αiγ − 1

2rα
2
i − 1

2rψ(κ)αiα−i − 1
2α

2
i

)
.

The expression for αBRi (α−i;κ, r) follows from simple algebra, noting that E[s2
i ] > 0 while

the second derivative with respect to αi for the term in the parenthesis is −1
2r − 1

2 < 0.
To see that the said linear strategy is optimal among all strategies, suppose i instead

chooses any qi after si. By the above arguments, the objective to maximize is

qi · (γsi − 1
2rqi − 1

2rψ(κ)siα−i) − 1
2q

2
i .

This objective is a strictly concave function in qi, as −1
2r − 1

2 < 0. The first-order condition
determines the maximizer, q∗

i = αBRi (α−i;κ, r) · si. Therefore, the linear strategy also
maximizes interim expected utility after every signal si, so it cannot be improved upon by
any other strategy.

C Proof of Lemma 3

Proof. Conditional on the signal si, the distribution of market price under the model Fκ,r̂,σ̂2
ζ

is normal with a mean of

E[ω | si] − 1
2 r̂αisi − 1

2 r̂α−i · Eκ[s−i | si] = γsi − 1
2 r̂αisi − 1

2 r̂α−iψ(κ)si,

while the distribution of market price under Fκ•,r•,(σ•
ζ

)2 is normal with a mean of

E[ω | si] − 1
2r

•αisi − 1
2r

•α−i · Eκ• [s−i | si] = γsi − 1
2r

•αisi − 1
2r

•α−iψ(κ•)si.

13



Matching coefficients on si, we find that if r̂ = r• αi+α−iψ(κ•)
αi+α−iψ(κ) , then these means match after

every si for any αi, α−i. On the other hand, for any other value of r̂, these means will not
match for any si ̸= 0.

Conditional on the signal si, the variance of market price under F
κ,r• αi+α−iψ(κ•)

αi+α−iψ(κ) ,σ̂
2
ζ

is

Varκ
[
ω − 1

2r
•αi + α−iψ(κ•)
αi + α−iψ(κ) α−is−i | si

]
+ σ̂2

ζ .

By properties of the multivariate normal distribution, this conditional variance is constant in
si. Let L = maxκ∈[0,1],0≤αi,α−i≤γ Varκ

[
ω − 1

2r
• αi+α−iψ(κ•)
αi+α−iψ(κ) α−is−i | si

]
. This maximum exists

and is finite since the expression is a continuous function of κ, αi, α−i on the compact domain
[0, 1] × [0, γ]2. The conditional variance of market price under F

κ,r• αi+α−iψ(κ•)
αi+α−iψ(κ) ,σ̂

2
ζ

is bounded

by L+ σ̂2
ζ whenever 0 ≤ αi, α−i ≤ γ.

On the other hand, the variance of market price under Fκ•,r•,σ•
ζ

is at least (σ•
ζ )2. Thus,

whenever (σ•
ζ )2 ≥ L, there exists a unique value of σ̂2

ζ such that the conditional variance
under F

κ,r• αi+α−iψ(κ•)
αi+α−iψ(κ) ,σ̂

2
ζ

is the same as that under Fκ•,r•,(σ•
ζ

)2 given every si.

D Proof of Proposition 1

Proof. Take L as in Lemma 3. Consider a candidate linear equilibrium with strategies 0 ≤
αR→R, αE→R, αR→E ≤ γ, together with the self-confirming inferences given these strategies,
which exist and are unique by Lemma 3. Since residents are correctly specified, it is easy to
see that the only self-confirming inferences for them are r•, (σ•

ζ )2.
Using the equilibrium belief of the resident, we must have αR→R = αBRi (αR→R;κ•, r•), so

αR→R = γ− 1
2 r

•ψ(κ•)αR→R

1+r• . We find the unique solution αR→R = γ
1+r•+ 1

2 r
•ψ(κ•) . Next, we turn to

αR→E, αE→R, and rE, the entrant’s self-confirming inference. For agents in each group to best
respond to each others’ play and for the entrant’s inferences to be self-confirming, we must have
αR→E = γ− 1

2 r
•ψ(κ•)αE→R

1+r• , αE→R = γ− 1
2 rEψ(κ)αR→E

1+rE , and rE = r• αE→R+αR→Eψ(κ•)
αE→R+αR→Eψ(κ) from Lemma

3. We may rearrange the expression for αE→R to say αE→R = γ − rEαE→R − 1
2rEψ(κ)αR→E.
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Substituting the expression of rE into this expression of αE→R, we get

αE→R = γ − rE · (αE→R + αR→Eψ(κ) − 1
2αR→Eψ(κ))

= γ − r•αE→R + r•αR→Eψ(κ•)
αE→R + αR→Eψ(κ) · (αE→R + αR→Eψ(κ) − 1

2αR→Eψ(κ))

= γ − r•αE→R − r•αR→Eψ(κ•) + 1
2ψ(κ)αR→E

r•αE→R + r•αR→Eψ(κ•)
αE→R + αR→Eψ(κ)

Multiply by αE→R + αR→Eψ(κ) on both sides and collect terms,

(αE→R)2 · [−1 − r•] + (αE→RαR→E) · [−ψ(κ) − 1
2r

•ψ(κ) − r•ψ(κ•)]

− (αR→E)2 · [12r
•ψ(κ•)ψ(κ)] + γ[αE→R + αR→Eψ(κ)] = 0. (1)

Consider the following quadratic function in x,

H(x) := x2 [−1 − r•]+(x · ℓ(x))·[−ψ(κ)−1
2r

•ψ(κ)−r•ψ(κ•)]−(ℓ(x))2·[12r
•ψ(κ•)ψ(κ)]+γ [x+ ℓ(x)ψ(κ)] = 0,

(2)
where ℓ(x) := γ− 1

2 r
•ψ(κ•)x

1+r• is a linear function in x. In a linear equilibrium, αE→R is a root
of H(x) in [0, γ

1
2 r

•ψ(κ•) ]. To see why, if we were to have αE→R >
γ

1
2 r

•ψ(κ•) , then αR→E = 0. In
that case, rE = r• and so αE→R = αBRi (0;κ•, r•) = γ

1+r• . Yet γ
1+r• <

γ
1
2 r

•ψ(κ•) , contradiction.
Conversely, for any root x∗ of H(x) in [0, γ

1
2 r

•ψ(κ•) ], there is a linear equilibrium where
αE→R = x∗, αR→E = ℓ(x∗) ∈ [0, γ], and rE = r• αE→R+αR→Eψ(κ•)

αE→R+αR→Eψ(κ) .

Claim A.1. There exist some κ1 < κ• < κ̄1 so that H has a unique root in [0, γ
1
2 r

•ψ(κ•) ] for all
κ ∈ [κ1, κ̄1] ∩ [0, 1].

By Claim A.1 (proved below), for κ ∈ [κ1, κ̄1] ∩ [0, 1], there is a unique linear equilibrium,
where equilibrium behavior is given as a function of κ by αR→R(κ), αR→E(κ) and αE→R(κ).

Recall from Lemma 2 that the objective expected utility from playing αi against an
opponent who plays α−i is U•(αi, α−i) = E[s2

i ] · (αiγ − 1
2r

•α2
i − 1

2r
•ψ(κ•)αiα−i − 1

2α
2
i ). If

−i plays the rational best response, then the objective expected utility of choosing αi

is Ūi(αi) := E[s2
i ] · (αiγ − 1

2r
•α2

i − 1
2r

•ψ(κ•)αi
γ− 1

2 r
•ψ(κ•)αi

1+r• − 1
2α

2
i ). The derivative in αi is

Ū
′
i (αi) = γ−r•αi− 1

2
r•

1+r•γψ(κ•)+ 1
2

(r•)2ψ(κ•)2

1+r• αi−αi. We also know that αR→R = γ
1+r•+ 1

2 r
•ψ(κ•)
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satisfies the first-order condition that γ − r•αR→R − 1
2r

•ψ(κ•)αR→R − αR→R = 0, therefore

Ū
′
i (αR→R) = −1

2
r•

1 + r•γψ(κ•) + 1
2

(r•)2ψ(κ•)2

1 + r• αR→R + 1
2r

•ψ(κ•)αR→R

=
[
r•ψ(κ•)

2

]( −γ
1 + r• + αR→Rψ(κ•)r•

1 + r• + αR→R

)
.

Making the substitution αR→R = γ
1+r•+ 1

2 r
•ψ(κ•) ,

−γ
1 + r• + αR→Rψ(κ•)r•

1 + r• + αR→R =
−γ(1 + r• + 1

2ψ(κ•)r•) + γψ(κ•)r• + γ(1 + r•)
(1 + r•)(1 + r• + 1

2ψ(κ•)r•)

=
1
2γψ(κ•)r•

(1 + r•)(1 + r• + 1
2ψ(κ•)r•)

> 0.

Therefore, if we can show that α′
E→R(κ•) > 0, then there exists some κ1 ≤ κ < κ• < κ̄ ≤ κ̄1

so that for every κ ∈ [κ, κ̄] ∩ [0, 1], κ ̸= κ• entrants have strictly higher or strictly lower
equilibrium fitness in the unique linear equilibrium than residents, depending on the sign of
κ−κ•. Consider again the quadratic function H(x) in Equation (2) and implicitly characterize
the unique root x in [0, γ

1
2 r

•ψ(κ•) ] as a function of κ in a neighborhood around κ•. Denote this

root by αM , let D := dαM

dψ(κ) and also note dℓ(αM )
dψ(κ) = −r•

2(1+r•)ψ(k•) ·D. We have

(−1 − r•) · (2αM ) ·D + (αMℓ(αM ))(−1 − 1
2r

•)

+ (ℓ(αM )D + αM
−r•

2(1 + r•)ψ(κ•)D) · (−ψ(κ) − 1
2r

•ψ(κ) − r•ψ(κ•)) + (ℓ(αM ))2 · (−1
2r

•ψ(κ•))

+ (2ℓ(αM ) −r•

2(1 + r•)ψ(κ•)D) · (−1
2r

•ψ(κ•)ψ(κ)) + γ(D + ℓ(αM ) + ψ(κ) −r•

2(1 + r•)ψ(κ•)D) = 0

Evaluate at κ = κ•, noting that αM(κ•) = ℓ(αM(κ•)) = x∗ := γ
1+r•+ 1

2ψ(κ•)r• . The terms
without D are:

(x∗)2(−1 − 1
2r

•) + (x∗)2(1
2r

•ψ(κ•)) + γx∗ = x∗ ·
[
−x∗ ·

(
1 + r• + 1

2ψ(κ•)r• − 1
2r

•
)

+ γ

]
= x∗ ·

[
−γ + 1

2x
∗r• + γ

]
= 1

2r
•(x∗)2 > 0.

The coefficient in front of D is:

(−1−r•)(2x∗)+(x∗+x∗ −r•

2(1 + r•)ψ(κ•))·(−ψ(κ•)−3
2r

•ψ(κ•))+1
2x

∗ (r•)2

(1 + r•)ψ(κ•)3+γ+γψ(κ•)2· −r•

2(1 + r•) .
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Make the substitution γ = x∗ ·
(
1 + r• + 1

2ψ(κ•)r•
)
,

x∗ ·
{

−2 − 2r• +
(

1 − r•

2(1 + r•)ψ(κ•)
)

· ψ(κ•)(−3
2r

• − 1) + (r•)2

2(1 + r•)ψ(κ•)3
}

+x∗ ·
{(

1 + r• + 1
2ψ(κ•)r•

)
· (1 − ψ(κ•)2 r•

2(1 + r•))
}
.

Collect terms inside the parenthesis based on powers of ψ(κ•), we get

x∗ ·
{
ψ(κ•)3 (r•)2

2(1 + r•) − ψ(κ•)2r•

2(1 + r•)(−3
2r

• − 1) + ψ(κ•)(−3
2r

• − 1) − 2r• − 2
}

+x∗ ·
{

−ψ(κ•)3 (r•)2

4(1 + r•) − ψ(κ•)2r•

2(1 + r•) · (1 + r•) + 1 + r• + 1
2ψ(κ•)r•

}
.

Combine to get: x∗ ·
[
ψ(κ•)3 (r•)2

4(1+r•) + ψ(κ•)2(r•)2

4(1+r•) − ψ(κ•)r• − ψ(κ•) − r• − 1
]
. Here ψ(κ•)3 (r•)2

4(1+r•)

and ψ(κ•)2(r•)2

4(1+r•) are positive terms with ψ(κ•)3 (r•)2

4(1+r•) +ψ(κ•)2(r•)2

4(1+r•) ≤ (r•)2

4(1+r•) + (r•)2

4(1+r•) ≤ 1
2 ·r• · r•

1+r• ≤
1
2r

•. Now −r• + 1
2 · r• < 0, and also −ψ(κ•)r• − ψ(κ•) − 1 < 0. Thus, the coefficient in front

of D is strictly negative. This shows D(κ•) > 0. Finally, dαM

dψ(κ) has the same sign as dαM

dκ
since

ψ(κ) is strictly increasing in κ.

D.1 Proof of Claim A.1

Proof. We show that H(x) (i) has a unique root in [0, γ
1
2 r

•ψ(κ•) ] when κ = κ•; (ii) does not have
a root at x = 0 or x = γ

1
2 r

•ψ(κ•) , and (iii) the root in the interval is not a double root. By these
three statements, since H(x) is a continuous function of κ, there must exist some κ1 < κ• < κ̄1

so that it continues to have a unique root in [0, γ
1
2 r

•ψ(κ•) ] for all κ ∈ [κ1, κ̄1] ∩ [0, 1].

Statement (i) has to do with the fact that if κ = κ•, then we need αR→E = γ− 1
2 r

•ψ(κ•)αE→R

1+r•

and αE→R = γ− 1
2 r

•ψ(κ•)αR→E

1+r• . These are linear best response functions with a slope of
−1

2
r•

1+r•ψ(κ•), which falls in (−1
2 , 0). So there can only be one solution to H in that region

(even when we allow αR→E ̸= αE→R), which is the symmetric equilibrium found before
αR→E = αE→R = γ

1+r•+ 1
2 r

•ψ(κ•) .

For Statement (ii), we evaluate H(0) = −( γ
1+r• )2 1

2r
•ψ(κ•)2 + γ2ψ(κ•)

1+r• = ψ(κ•)γ2

1+r• (1 −
(1/2)r•ψ(κ•)

1+r• ) ̸= 0 because 1+r• > (1/2)r•ψ(κ•). Finally, we evaluateH( γ
1
2 r

•ψ(κ•)) = ( γ
1
2 r

•ψ(κ•))
2(−1−

r•) + γ γ
1
2 r

•ψ(κ•) = γ2
1
2 r

•ψ(κ•)(1 − 1+r•
1
2 r

•ψ(κ•)). This expression is once again not 0 because 1 + r• >

(1/2)r•ψ(κ•).
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For Statement (iii), we show that H ′(x∗) < 0 where x∗ = γ
1+r•+ 1

2 r
•ψ(κ•) . We find that

H
′(x) =2x(−1 − r•) +

(
γ − r•ψ(κ•)x

1 + r•

)
(−ψ(κ•) − 1

2r
•ψ(κ•) − r•ψ(κ•))

− 2
(
γ − 1

2r
•ψ(κ•)x

1 + r•

)(
−1

2r
•ψ(κ•)

1 + r•

)(1
2r

•ψ(κ•)2
)

+ γ −
1
2r

•ψ(κ•)
1 + r• γψ(κ•).

Collecting terms, the coefficient on x is

−2 − 2r• + ψ(κ•)2r•

1 + r•

(
3
2r

• + 1 − 1
4((r•)2ψ(κ•)2

1 + r• )
)
,

while the coefficient on the constant is

γψ(κ•)
1 + r•

(
−3

2r
• − 1 + 1

2
(r•)2ψ(κ•)2

1 + r• − 1
2r

•ψ(κ•)
)

+ γ.

Therefore, we may calculate H ′(x∗) · 1
x∗ (1 + r•)2, which has the same sign as H ′(x∗), to be:

− (1 + r•)2(2 + 2r•) + ψ(κ•)2r•((1 + r•)(3
2r

• + 1) − 1
4(r•)2ψ(κ•)2)

+ (1 + r• + 1
2r

•ψ(κ•))
[
ψ(κ•)((1 + r•)[−3

2r
• − 1 − 1

2r
•ψ(κ•)] + 1

2(r•)2ψ(κ•)2) + (1 + r•)2
]
.

We have

−(1 + r•)2(2 + 2r•) + (1 + r• + 1
2r

•ψ(κ•))(1 + r•)2 ≤ (1 + r•)2(−1 − 1
2r

•) < 0,

since 0 ≤ ψ(κ•) ≤ 1. Also, for the same reason,

(1 + r•)[−1
2r

•ψ(κ•)] + 1
2(r•)2ψ(κ•)2 ≤ −1

2(r•)2ψ(κ•) + 1
2(r•)2ψ(κ•)2 ≤ 0.

Finally, ψ(κ•)2r•(1 + r•)(3
2r

• + 1) + (1 + r• + 1
2r

•ψ(κ•))ψ(κ•)(1 + r•)(−3
2r

• − 1) is no larger
than

ψ(κ•)2r•(3
2(r•)2 + 5

2r
• + 1) + [r•ψ(κ•)r•(−(3/2)r•)]

+ [r•ψ(κ•)r•(−1) + 1 · ψ(κ•)r•(−(3/2)r•)] + [r•ψ(κ•) · 1 · (−1)]
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where the negative terms in the first, second, and third square brackets are respectively larger
in absolute value than the first, second and third parts in the expansion of the first summand.
Therefore, we conclude H ′(x∗) < 0.

E Proof of Proposition 2

Proof. We will show that in every linear equilibrium: (i) for each g ∈ {R,E}, the inferred
elasticity under κg is 1+ψ(κ•)

1+ψ(κg)r
•; (ii) for each g ∈ {R,E}, αg→g = γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κg) )

;

(iii) the equilibrium fitness of group g is weakly higher than that of group g′ if and only if
κg ≤ κg′ .

Take L as in Lemma 3. In any linear equilibrium, by Lemma 3, group g agents infer
elasticity rINFi (αg→g, αg→g;κ•, κg, r

•) = αg→g+αg→gψ(κ•)
αg→g+αg→gψ(κg)r

• = 1+ψ(κ•)
1+ψ(κg)r

•, proving (i).

Given this belief, we must have αg→g =
γ− 1

2
1+ψ(κ•)
1+ψ(κg) r

•ψ(κg)αg→g

1+ 1+ψ(κ•)
1+ψ(κg) r

• by Lemma 2. Rearranging

yields αg→g = γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

, proving (ii).
From Lemma 2, the objective expected utility of each player when both play the strategy

profile αsymm is E[s2
i ] ·

(
αsymmγ − 1

2r
•α2

symm − 1
2r

•ψ(κ•)α2
symm − 1

2α
2
symm

)
. This function is

strictly concave and quadratic in αsymm that is 0 at αsymm = 0. Therefore, it is strictly
decreasing in αsymm for αsymm larger than the team solution αTEAM that maximizes this
expression, given by the first-order condition

γ − r•αTEAM − r•ψ(κ•)αTEAM − αTEAM = 0 ⇒ αTEAM = γ

1 + r• + r•ψ(κ•) .

For any value of κ ∈ [0, 1], using the fact that ψ(0) > 0 and ψ is strictly increasing,

γ

1 + r•

2 (1 + ψ(κ•)) + r•

2 (1+ψ(κ•)
1+ψ(κ) )

>
γ

1 + r•

2 (1 + ψ(κ•)) + r•

2 (1 + ψ(κ•)) = αTEAM .

Also, γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

is a strictly increasing function in κ, since ψ is strictly increasing.
We therefore conclude that each player’s utility when they play γ

1+ r•
2 (1+ψ(κ•))+ r•

2 ( 1+ψ(κ•)
1+ψ(κ) )

against
each other is strictly decreasing in κ, proving (iii).
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E.1 Proof of Proposition 3

Proof. Take L as in Lemma 3. Suppose the entrant has the dogmatic model with fixed
parameters κ, r•, (σ•

ζ )2 for some κ ∈ [0, 1]. Following the same steps of the proof of Proposition
1, there exists exactly one linear equilibrium, and it involves residents playing γ

1+r•+ 1
2 r

•ψ(κ•)
against each other.

We now analyze αE→R(κ) in such linear equilibrium with uniform matching. In the proof
of Proposition 1, we defined Ūi(αi) as i’s objective expected utility of choosing αi when −i
plays the rational best response. We showed that Ū ′

i ( γ
1+r•+ 1

2 r
•ψ(κ•)) > 0. In a linear equilibrium

where i believes in parameter (κ, r•, (σ•
ζ )2) and −i believes in parameters (κ•, r•, (σ•

ζ )2), using

the expression for αBRi from Lemma 2, the play of i solves x =
γ− 1

2 r
•ψ(κ)

(
γ− 1

2 r
•ψ(κ•)x

1+r•

)
1+r• , which

implies αE→R(κ) = γ(1+r•− 1
2ψ(κ)r•)

1+2r•+(r•)2− 1
4ψ(κ)ψ(κ•)(r•)2 . Taking the derivative and evaluating at κ = κ•,

we find an expression with the same sign as 1
4ψ

′(κ•)r•(1 + r•)γ(−2(1 + r•) + ψ(κ•)r•), which
is strictly negative because ψ′(κ•) > 0, r• > 0, γ > 0, and ψ(κ•) ≤ 1. This shows there exists
ϵ > 0 so that for every κh ∈ (κ•, κ• + ϵ], we have Ūi(αE→R(κh)) < Ūi( γ

1+r•+ 1
2 r

•ψ(κ•)), that is
entrants with κE = κh have strictly lower fitness than residents with κR = κ• in the unique
linear equilibrium for uniform matching. This argument establishes the first claim.

Next, we turn to αE→E(κ) with assortative matching. Using the expression for αBRi in
Lemma 2, we find that αE→E(κ) = γ

1+r•+ 1
2 r

•ψ(κ) . Since ψ′
> 0, we have αE→E(κ) is strictly

larger than αR→R = γ
1+r•+ 1

2 r
•ψ(κ•) when κ < κ•. From the proof of Proposition 2, we know

that objective payoffs in the stage game are strictly decreasing in linear strategies larger than
the team solution αTEAM = γ

1+r•+r•ψ(κ•) . Since αE→E(κ) > αR→R > αTEAM , we conclude the
entrants with κE = κl have strictly lower fitness than residents with κR = κ• in the unique
linear equilibrium with assortative matching for any κl < κ•. This argument establishes the
second claim.
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Supplemental Appendix for “Higher-Order Beliefs and (Mis)learning
from Prices”

Kevin He and Jonathan Libgober

SA 1 More General LQN Games

We turn to general incomplete-information games and provide a condition for a model to
be susceptible to invasion from a “nearby” misspecified model. This condition shows how
assortativity and the learning channel shape the evolutionary selection of models for a broader
class of stage games and biases. We also relate the condition to the results studied in the
main text.

Consider a stage game where a state of the world ω is drawn each time the game is
played. Players 1 and 2 observe private signals s1, s2 ∈ S ⊆ R, possibly correlated given ω.

The objective distribution of (ω, s1, s2) is P•. Based on their signals, players choose actions
q1, q2 ∈ R and receive random consequences y1, y2 ∈ Y. The distribution over consequences
as a function of (ω, s1, s2, q1, q2) and the utility over consequences π : Y → R are such that
each player i’s objective expected utility from taking action qi against opponent action q−i in
state ω is given by u•

i (qi, q−i;ω), differentiable in its first two arguments.
For an interval of real numbers [κ, κ̄] with κ < κ̄ and κ• ∈ (κ, κ̄), suppose there is a family

of models (Θ(κ))κ∈[κ,κ̄]. Let λ = 0 denote the case where matching is uniform and λ = 1
denote the case where it is assortative. We fix a strategy space A ⊆ RS, representing the
feasible signal-contingent strategies. Suppose the resident model in the society is ΘR = Θ(κ•),
and the entrant model is ΘE = Θ(κ) for some κ ∈ [κ, κ̄]. Each model Θg may be flexible,
in which case it contains a set of parameters whose values must be inferred to match the
observable distribution over consequences given the equilibrium strategies. Alternatively, Θg

may be dogmatic, in which case it fixes the agent’s belief about the values of all persistent
parameters in the game.

As in Definition 4, a linear equilibrium for a given interaction structure λ ∈ {0, 1} consists
of each group’s beliefs about the persistent game parameters and each group’s strategy when
playing each type of opponent, such that:

• Every agent maximizes their subjective expected utility in every match (given opponent’s
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strategy and their belief about the persistent game parameters),

• Beliefs are either the fixed parameters in a group’s dogmatic model or self-confirming
inferences of the free parameters in a group’s flexible model — that is, parameters
values that generated the observed distribution of consequences in the matches that
the group faces with probability 1, and

• All strategies are linear functions of private signal realizations – that is, for every group
g and every opponent group g′, the strategy σg→g′(si) = αg→g′(si) · si for some real
number αg→g′(si).

The next assumption requires there to be a unique linear equilibrium for either interaction
structure and for any κ ∈ [κ, κ̄]. A significant portion of our analysis for our duopoly model
aimed to demonstrate that these existence and uniqueness properties held. On the other
hand, linear equilibria exist and are unique in a large class of games outside of the duopoly
framework, and in particular in LQN games under some conditions on the payoff functions
(see, e.g., Angeletos and Pavan (2007)), and hence we do not expect them to be particularly
sensitive to specific details of this environment.

Assumption SA1. Suppose there is a unique linear equilibrium for either λ ∈ {0, 1}, with
ΘR = Θ(κ•), ΘE = Θ(κ) for every κ ∈ [κ, κ̄]. Suppose the κ-indexed linear equilibrium
strategies coefficients αR→R(κ), αR→E(κ), αE→R(κ), αR→R(κ) are differentiable in κ. Finally,
suppose that in the linear equilibrium with κ = κ•, αR→R(κ•) is objectively interim-optimal
against itself.5

Proposition SA1. Fix λ ∈ {0, 1} and let α• := αR→R(κ•). Then, under Assumption SA1, if

E•
[
E•
[
∂u•

1
∂q2

(α•s1, α
•s2, ω) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)] · s2 | s1

]]
> 0,

then there exists some ϵ > 0 so that Θ(κ•) is susceptible to invasion from models Θ(κ) with
κ ∈ (κ•, κ• + ϵ] ∩ [κ, κ̄], with λ interaction structure. Also, if

E•
[
E•
[
∂u•

1
∂q2

(α•s1, α
•s2, ω) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)] · s2 | s1

]]
< 0,

5We say αR→R is objectively interim-optimal against itself if, for every si ∈ S, αR→R(κ•) · si maximizes
the agent’s objective expected utility across all of R when −i uses the same linear strategy αR→R(κ•).
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then there exists some ϵ > 0 so that Θ(κ•) is susceptible to invasion from models Θ(κ) with
κ ∈ [κ• − ϵ, κ•) ∩ [κ, κ̄], with λ interaction structure. Here E• is the expectation with respect
to the objective distribution of (ω, s1, s2) under P•.

Proposition SA1 describes a general condition to determine whether a correctly specified
model is evolutionarily fragile against a nearby misspecified entrant model. The condition
asks if a slight change in the entrant model’s κ leads entrants’ opponents to change their
equilibrium actions such that the entrants become better off on average. These opponents
are the residents under uniform matching λ = 0, so α′

R→E(κ•) is relevant. These opponents
are other entrants under assortative matching λ = 1, so α′

E→E(κ•) is relevant.
Proposition SA1 implies that one should only expect the correctly specified model to be

resistant to invasion from all nearby models in “special” cases — that is, when the expectation
in the statement of Proposition SA1 is exactly equal to 0. One such special case is when the
agents face a decision problem where 2’s action does not affect 1’s payoffs, that is ∂u•

1
∂q2

= 0.
This condition sets the expectation to zero, so the result never implies that the correctly
specified model is susceptible to invasion from a misspecified model in such decision problems.

In the duopoly game analyzed previously, we have ∂u•
1

∂q2
(q1, q2, ω) = −1

2r
•q1. Player 1 is

harmed by player 2 producing more if q1 > 0 and helped if q1 < 0. From straightforward
algebra, the expectation in Proposition SA1 simplifies to

E•[s2
1] · (−1

2ψ(κ•)r•α•) · [(1 − λ)α′

R→E(κ•) + λα
′

E→E(κ•)].

The structure of the LQN game is also used in signing the derivatives of αg→g′(κ) (although
doing so may still be tractable in other environments with other kinds of structure). Focusing
on the case where all agents have flexible models, the proof of Proposition 1 shows that when
λ = 0, α′

R→E(κ•) < 0. The proof of Proposition 2 shows that when λ = 1, α′
E→E(κ•) > 0.

The uniqueness of linear equilibrium also follows from these results, for an open interval of κ
containing κ•. Lemma 2 implies linear strategies played by two correctly specified players
against each other are objectively interim-optimal. So, the conditions of Proposition SA1
hold for λ ∈ {0, 1}, and we deduce that with flexible models, the correctly specified model is
susceptible to invasion from slightly higher κ (for λ = 0) and slightly lower κ (for λ = 1).
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SA 1.1 Proof of Proposition SA1

Proof. Consider the society where ΘR = ΘE = Θ(κ•), where ΘR is the resident model and ΘE

is the entrant model. For any linear equilibrium with behavior (σR→R, σR→E, σE→R, σE→E) and
beliefs θR ∈ ΘR and θE ∈ ΘE, there exists another linear equilibrium (σ′

R→R, σ
′
R→E, σ

′
E→R, σ

′
E→E)

where σ′

g,g′ = σR→R for all g, g′ ∈ {A,B} and all agents infer parameters θR. The uniqueness
of linear equilibrium from Assumption SA1 implies αR→E(κ•) = αE→R(κ•) = αE→E(κ•) =
αR→R(κ•) = α•.

Now consider the society where ΘE = Θ(κ). By assumption, there exists a linear
equilibrium where αR→R(κ) = αR→R(κ•). Since we also take it to be unique, we must in
fact have αR→R(κ) = αR→R(κ•) for all κ, so the fitness of model Θ(κ•) in the unique linear
equilibrium is

E• [E• [u•
1(α•s1, α

•s2, ω) | s1]] .

Given λ and entrant model Θ(κ), the entrant’s fitness in the unique linear equilibrium is

E• [E• [(1 − λ)u•
1(αE→R(κ)s1, αR→E(κ)s2, ω) + (λ)u•

1(αE→E(κ)s1, αE→E(κ)s2, ω) | s1]] .

Differentiate and evaluate at κ = κ•. At κ = κ•, agents with models ΘR and ΘE have the
same fitness since they play the same strategies. So, a non-zero sign on the derivative would
give the desired susceptibility to invasion from models with either slightly higher or slightly
lower κ. This derivative is:

E•

E•

 ∂u•
1

∂q1
(α•s1, α

•s2, ω) · [(1 − λ)α′
E→R(κ•) + λα

′
E→E(κ•)] · s1

+∂u•
1

∂q2
(α•s1, α

•s2, ω) · [(1 − λ)α′
R→E(κ•) + λα

′
E→E(κ•)] · s2

∣∣∣∣∣∣ s1

 .
Using the interim optimality part of Assumption SA1, E•

[
∂u•

1
∂q1

(α•s1, α
•s2, ω) | s1

]
= 0 for

every s1 ∈ S, using the necessity of the first-order condition. The derivative thus simplifies
as claimed.
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