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1. Introduction

Starting with Selten (1975), a number of papers have used the device of vanishingly small 
trembles to refine the set of Nash equilibria. This paper introduces player-compatible equilib-
rium (PCE), which extends the tremble-based approach by imposing restrictions on how one 
player’s trembles compare to those of another. We say player i is more player-compatible with 
strategy s∗

i than player j is with strategy s∗
j if whenever s∗

j is optimal for j against some to-
tally mixed correlated strategy distribution σ , s∗

i is strictly optimal for i against any other totally 
mixed correlated strategy distribution σ̂ matching σ in terms of the strategies of players other 
than i and j . PCE requires that i is more likely to tremble onto s∗

i than j onto s∗
j whenever i

is more player-compatible with s∗
i than j is with s∗

j . This solution concept is invariant to the 
utility representations of players’ preferences over game outcomes, and provides a link between 
tremble-based refinements and learning-in-games. As we will explain, PCE interprets trembles 
not as errors, but as players’ deliberate experiments to learn how others play. Its cross-player 
tremble restrictions derive from an analysis of the relative frequencies of experiments that differ-
ent players choose to undertake over time under a number of commonly used learning policies.

Section 2 defines player compatibility and PCE, studies their basic properties, and proves 
that PCE exist in all finite games. The player compatibility relation is easiest to satisfy when i
and j are “non-interacting,” meaning that their payoffs do not depend on each other’s play. But 
PCE can have bite even when all players interact with each other, provided that the interactions 
are not too strong. Moreover, as shown by the examples in Section 3, PCE can rule out seem-
ingly implausible equilibria that other tremble-based refinements such as trembling-hand perfect 
equilibrium (Selten, 1975) and proper equilibrium (Myerson, 1978) cannot eliminate.

One of these examples is a “link-formation game,” where players are split into two sides, 
and each player decides whether or not to pay a cost to be Active and form links with all of 
the active players on the other side. Players with lower costs are more compatible with Active
and so experiment with it more. In the “anti-monotonic” version of the game, players who incur 
a higher private cost of link formation give lower benefits to their linked partners; in the “co-
monotonic” version, higher cost players give others higher benefits. In the anti-monotonic version 
the only PCE outcome is for all players to choose Active, because the experimentation of the 
low-cost players induces all players on the other side to be Active as well. On the other hand, 
both “all Active” and “all Inactive” are PCE outcomes in the co-monotonic case. In contrast, 
other equilibrium refinements make the same predictions whether payoffs are anti-monotonic or 
co-monotonic.

We provide a motivation for player-compatible trembles in a learning framework where agents 
are born into different player roles and repeatedly play a fixed game. They face some time-
invariant distribution of opponents’ play, as they would in a steady state of a model where a 
continuum of anonymous agents are randomly matched each period. We compare the experi-
mentation behavior of agents in different player roles who have the same expected lifespan and 
who follow “index learning policies.” These policies assign a numerical index to each strategy 
that only depends on data from periods when that strategy was used, and play the strategy with 
the highest index. We formulate an index compatibility condition for index policies, and use a 
coupling argument to show that any index policies for i and j satisfying this index-compatibility 
condition for strategies s∗

i and s∗
j will lead to i experimenting relatively more with s∗

i than j with 
s∗
j over their lifetimes against any distribution of opponents’ play. In particular, when agents use 

such policies, population i uses s∗
i more often than population j uses s∗

j in every steady state of 
the learning framework.
2
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Index compatibility provides a general condition for i to choose s∗
i more often than j chooses 

s∗
j . This condition applies across a range of observation structures and (not necessarily optimal) 

learning policies. We link player compatibility with index compatibility for two canonical learn-
ing policies in a class of “factorable games.” In these games, playing a strategy si reveals how 
opponents played at all the information sets that are relevant for i’s payoff when they play si , but 
gives no information about the payoffs of i’s other strategies. We show that player compatibility 
implies index compatibility for the rational learning policy given by the Gittins index, and for 
the weighted fictitious play heuristic (Cheung and Friedman, 1997). Interpreting trembles as play 
frequencies during a learning process, our analysis provides a learning foundation for the cross-
player tremble restrictions that are this paper’s main innovation. In the link-formation game, for 
example, it justifies the idea that low-cost agents assign a higher tremble probability to Active
than high-cost ones do.

1.1. Related work

1.1.1. Tremble-based refinements
Tremble-based solution concepts date back to Selten (1975), who thanks Harsanyi for sug-

gesting them. These solution concepts consider totally mixed strategy profiles where players do 
not play an exact best reply to their opponents’ strategies, but instead assign positive probabilities 
to all strategies as the result of mistakes or “trembles”. Different solution concepts in this class 
consider different kinds of trembles, but they all make predictions based on the limits of these 
perturbed strategy profiles as the probability of trembling tends to zero. Since we compare PCE 
to these refinements below, we summarize them here for the reader’s convenience.

An ε-perfect equilibrium is a totally mixed strategy profile where every non-best reply has 
weight less than ε. A limit of εt -perfect equilibria where εt → 0 is called a trembling-hand 
perfect equilibrium. An ε-proper equilibrium is a totally mixed strategy profile σ where for every 
player i and strategies si and s′

i , if i does strictly better with s′
i than si when −i play σ−i , then 

σi(si) < ε · σi(s
′
i ). A limit of εt -proper equilibria where εt → 0 is called a proper equilibrium;

in this limit a more costly tremble is infinitely less likely than a less costly one, regardless of 
the cost difference. Approachable equilibrium (Van Damme, 1987) is also based on the idea that 
strategies with worse payoffs are played less often. It too is the limit of εt -perfect equilibria, 
but where the players pay control costs to reduce their tremble probabilities. When these costs 
are “regular,” all of the trembles are of the same order. Because PCE does not require that the 
less likely trembles are infinitely less likely than more likely ones, it is closer to approachable 
equilibrium than to proper equilibrium. The strategic stability concept of Kohlberg and Mertens 
(1986) is also defined using trembles, but applies to components of Nash equilibria as opposed to 
single strategy profiles, and asks for robustness to all converging sequences of trembles instead 
of just to one of them.

Unlike PCE, proper equilibrium and approachable equilibrium do not impose cross-player 
restrictions on the relative probabilities of various trembles. For this reason, these equilibrium 
concepts reduce to perfect Bayesian equilibrium in signaling games with two possible signals, 
such as the beer-quiche game of Cho and Kreps (1987), when each type of the sender is viewed 
as a different player. They do impose restrictions when applied to the ex-ante strategic form of 
the game, i.e., at the stage before the sender has learned their type. However, as Cho and Kreps 
(1987) point out, evaluating the cost of mistakes at the ex-ante stage of a signaling game means 
that the interim losses are weighted by the prior distribution over sender types, so that less likely 
types are more likely to tremble. In addition, applying a different positive linear rescaling to each 
3
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type’s utility function preserves every type’s preference over lotteries on outcomes, but changes 
the sets of proper and approachable equilibria, while such utility rescalings have no effect on the 
set of PCE. In light of these issues, we always apply tremble-based refinements at the interim 
stage in Bayesian games.

Like PCE, extended proper equilibrium (Milgrom and Mollner, 2020) places restrictions on 
the relative probabilities of tremble by different players, but it does so in a different way: An 
extended proper equilibrium is the limit of (β,εt )-proper equilibria, where β = (β1, ...βI ) is a 
strictly positive vector of utility re-scaling, and σi(si) < εt ·σj (sj ) if player i’s rescaled loss from 
si (compared to the best response) is less than j ’s loss from sj . In a signaling game with only two 
possible signals, every Nash equilibrium where each sender type strictly prefers not to deviate 
from their equilibrium signal is an extended proper equilibrium at the interim stage, because suit-
able utility rescalings for the types can lead to any ranking of their utility costs of deviating to the 
off-path signal. By contrast, Proposition 4 shows that every PCE must satisfy the compatibility 
criterion of Fudenberg and He (2018), which has bite even in binary signaling games such as the 
beer-quiche example of Cho and Kreps (1987). So an extended proper equilibrium need not be 
a PCE, a fact that Examples 1 and 2 further demonstrate. Conversely, because extended proper 
equilibrium makes some trembles infinitely less likely than others, it can eliminate some PCE.1

1.1.2. The learning foundations of equilibrium
This paper builds on the work of Fudenberg and Levine (1993) and Fudenberg and Kreps 

(1995, 1994) on learning foundations for self-confirming and Nash equilibrium. It is also re-
lated to recent work that provides explicit learning foundations for various equilibrium concepts 
that reflect ambiguity aversion, misspecified priors, or model uncertainty, such as Battigalli et al. 
(2016), Battigalli et al. (2019), Esponda and Pouzo (2016), Fudenberg et al. (2021) and Lehrer 
(2012). Unlike those papers, we focus on characterizing the relative rates with which different 
players experiment with strategies that are not myopically optimal. For this reason our analysis 
of learning is closer to Fudenberg and Levine (2006), Fudenberg and He (2018), and Clark and 
Fudenberg (2021). However, unlike in those papers, we do not show that in the limiting strat-
egy profile players respond to other players trembles or experimentation probabilities as PCE 
predicts. We say more about this difference in Section 5.5.

Our investigation of learning dynamics significantly expands on that of Fudenberg and He 
(2018), which focused on a particular learning policy (rational Bayesians) in a restricted set of 
games (signaling games). In contrast, our analysis applies more broadly to any index policies 
that satisfy an index compatibility condition. We show that two strategies of i and j ranked by 
player compatibility lead to index-compatible learning policies in the class of “factorable games” 
defined in Section 5, under both rational learning and weighted fictitious play. We develop new 
tools to deal with new issues that arise in these more general games. For instance, Fudenberg 
and He (2018) compare the Gittins indices of different sender types in signaling games using the 
fact that any stopping time (for the auxiliary optimal-stopping problem defining the index) of the 
less-compatible type is also feasible for the more-compatible type. But our general setting allows 
player roles to interact, so it is not always valid to exchange the stopping times of two different 
roles. A feasible stopping time for i in the auxiliary problem only conditions on past observations 
of −i’s play, but the optimal stopping time for j �= i may condition on past observations of i’s 
play in environments where i and j interact. We deal with this problem by showing how i can 

1 Example available on request.
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nevertheless construct a feasible stopping time that mimics an infeasible one of j . Moreover, 
when a player faces more than one opponent, the player’s optimal experimentation policy may 
lead them to observe a correlated distribution of opponents’ play, even though the opponents do 
not actually play correlated strategies. This issue of endogenous correlation requires us to define 
PCE in terms of correlated play, which we discuss further in Section 8.2.

In methodology the paper is related to other work on active learning and experimentation. In 
single-agent settings, these include Doval (2018), Francetich and Kreps (2020a,b), and Fryer and 
Harms (2017). In multi-agent settings additional issues arise such as free-riding and encouraging 
others to learn, see e.g., Bolton and Harris (1999), Keller et al. (2005), Klein and Rady (2011), 
Heidhues et al. (2015), Frick and Ishii (2015), Halac et al. (2016), Strulovici (2010), and the 
survey by Hörner and Skrzypacz (2016). Unlike most models of multi-agent bandit problems, 
our agents only learn from personal histories, not from the actions or histories of others. Our 
focus is the comparison of experimentation policies under different payoff parameters, which is 
central to PCE’s cross-player tremble restrictions.

2. Player compatible equilibrium

In this section, we develop a concept of the relative “compatibility” between two player-
strategy pairs and discuss its properties. We then introduce PCE, which builds cross-player 
tremble restrictions based on this compatibility relation into an equilibrium concept.

Like proper equilibrium, PCE is defined on the strategic form of a game. Of course many 
extensive forms can have the same strategic form, and the learning motivation for PCE and 
player-compatible trembles does depend on the underlying extensive form and the feedback 
structure, but we postpone these issues until Section 4.

2.1. Player compatibility

Consider a game in its strategic form with a finite set of players I, a finite strategy set Si

with |Si | ≥ 2 for each player i, and utility functions ui : S → R for each i where S := ×iSi . Let 
�(Si ) denote the set of mixed strategies for player i, and let �◦(S) represent the interior of �(S), 
the set of full-support correlated strategy distributions. For each player i, strategy si ∈ Si , and 
σ ∈ �◦(S), let Ui(si, σ) := ∑

(ŝi ,ŝ−i )∈S ui(si , ̂s−i ) · σ(ŝi , ̂s−i ) be i’s expected payoff from using 
si when −i’s actions are drawn from the −i marginal of σ . (Although Ui(si , σ) only depends on 
σ through its −i marginal, we make Ui a function of σ to simplify the next definition.)

We now define an incomplete or partial order on strategy-player pairs.

Definition 1. For player i �= j and strategies s∗
i ∈ Si , s∗

j ∈ Sj , i is more player compatible with 

s∗
i than j is with s∗

j , written as s∗
i � s∗

j ,2 if for every totally mixed correlated strategy distribution 
σ ∈ �◦(S) with

Uj (s
∗
j , σ ) = max

s′
j ∈Sj

Uj (s
′
j , σ ),

we get

2 This notation is unambiguous provided i and j have disjoint strategy sets. When i and j share some strategies, we 
will attach player subscripts.
5
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Ui(s
∗
i , σ̃ ) > max

s′′
i ∈Si\{s∗

i }
Ui(s

′′
i , σ̃ )

for every totally mixed correlated strategy distribution σ̃ ∈ �◦(S) satisfying marg−ij (σ ) =
marg−ij (σ̃ ).

In words, if s∗
j is weakly optimal for the less-compatible j against σ , then s∗

i is strictly optimal 
for the more-compatible i against any σ̃ whose marginal on −ij ’s play agrees with the marginal 
of σ . The compatibility condition does not depend on the particular expected utility functions 
used to represent the players’ preferences over probability distributions on S.

The definition of player compatibility simplifies in the following special case. A game has a 
multipartite structure if the set of players I can be divided into C mutually exclusive classes, 
I = I1 ∪ ... ∪ IC , in such a way that whenever i and j belong to the same class i, j ∈ Ic, (1) they 
are non-interacting, meaning neither player’s payoff depends on the other’s strategy; and (2) they 
have the same strategy set, Si = Sj , written also as Sc. Every Bayesian game has a multipartite 
structure when each type is viewed as a different player. As another example, we will later use a 
complete-information game with a multipartite structure, the link-formation game (Example 2), 
to illustrate both PCE and the learning motivation for player-compatible trembles.

In a game with multipartite structure with i, j ∈ Ic , suppose s∗
c ∈ Sc and σ ∈ �◦(S), and use 

s∗
ic to refer to i’s copy of s∗

c and s∗
jc to refer to j ’s copy. Then both Ui(s

∗
ic, σ) and Uj (s

∗
jc, σ)

only depend on the −ij marginal of σ . The definition of s∗
ic � s∗

jc reduces to: for every totally 
mixed correlated σ with σ−ij ∈ �◦(S−ij ),

Uj (s
∗
jc, σ ) = max

s′
j ∈Sj

Uj (s
′
j , σ )

implies

Ui(s
∗
ic, σ ) > max

s′′
i ∈Si\{s∗

ic}
Ui(s

′′
i , σ ).

Definition 1 is a comparison between i and j ’s best responses when they face the same distri-
bution over −ij ’s play, regardless of each other’s plays. In general, this requires us to consider 
i and j ’s respective best responses to pairs of mixed strategy distributions σ, σ̃ ∈ �◦(S) that 
match on the −ij marginal. But if i and j are non-interacting, then we only need to compare 
how i and j best respond to the same σ .

We show in Theorem 2 that in “factorable” games, play in the learning model is constrained 
by the player compatibility relation. (The learning model also has additional implications not 
captured by player compatibility for specific learning policies or specific games. But in this paper 
we focus on what we can rule out with a refinement concept based on player compatibility.)

This conclusion is stronger when the compatibility relation is more complete, and since 
�◦(S) ⊆ �(S), the compatibility relation is more complete than an alternative definition that 
replaces totally mixed strategy distributions with any correlated strategy distribution. Thus The-
orem 2 would continue to hold with this alternative definition; we restrict to totally mixed 
strategies in the definition of PCE to get a sharper conclusion. The restriction fits with our as-
sumptions in the learning model that all agents have full-support prior beliefs about opponents’ 
strategies (for rational Bayesians) or strictly positive initial counts (for weighted fictitious play). 
Conversely, since any profile of totally mixed marginal distributions on (Si)i∈I generates a to-
tally mixed product distribution on S, our definition of compatibility ranks fewer strategy-player 
pairs than an alternative definition that only considers mixed strategy profiles with independent 
6
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mixing between different opponents.3 We need to use the more stringent definition to match the 
microfoundations of our compatibility-based cross-player restrictions: the definition that only 
considers independent mixing imposes restrictions that the learning model does not imply.4

The compatibility relation is transitive, as the next proposition shows.

Proposition 1. Suppose s∗
i � s∗

j � s∗
k where s∗

i , s∗
j , s∗

k are strategies of distinct players i, j, k. 
Then s∗

i � s∗
k .

The compatibility relation is also asymmetric, except in some “corner cases.” Say that a strat-
egy is strictly interior dominant if it is strictly better than any other strategy versus any totally 
mixed strategy distribution of the opponents, and similarly say that it is strictly interior domi-
nated5 if it is strictly dominated versus totally mixed opponent strategy distributions.

Proposition 2. If s∗
i � s∗

j , then at least one of the following is true: (i) s∗
j �� s∗

i ; (ii) s∗
i is strictly 

interior dominated for i and s∗
j is strictly interior dominated for j ; (iii) s∗

i is strictly interior 

dominant for i and s∗
j is strictly interior dominant for j .6

The proofs of Propositions 1 and 2 are straightforward; they can be found in the Online Ap-
pendix. It is also simple to show that in two-player games, s∗

i � s∗
j only when s∗

j is strictly interior 
dominated or s∗

i is strictly interior dominant. So the player-compatibility relation is mostly inter-
esting in games with three or more players.7

2.2. Player-compatible trembles and PCE

PCE is a tremble-based solution concept. It builds on and modifies Selten (1975)’s definition 
of trembling-hand perfect equilibrium (in the strategic form) as the limit of equilibria of perturbed 
games in which agents are constrained to tremble, so we begin by defining our notation for the 
trembles and the associated constrained equilibria.

3 Formally, this alternative definition would replace “totally mixed correlated strategy distributions” with “indepen-
dently and totally mixed strategy profiles” in the definition of s∗

i
� s∗

j
.

4 One form of our microfoundation for player-compatible trembles considers rational learners who choose strategies 
based on their Gittins index. Even for learners who hold independent beliefs about opponents’ play at different informa-
tion sets, a strategy’s Gittins index need not be its expected payoff against independent randomizations by the opponents, 
but we show that the index is always the expected payoff against some correlated strategy distribution.

5 Recall that a strategy can be strictly dominated even though it is not strictly dominated by any pure strategy.
6 The converse of this statement is not true since the relation � is not in general complete: we could have neither 

s∗
i
� s∗

j
nor s∗

j
� s∗

i
.

7 Along the same lines, there is an equivalent definition of player compatibility based on strict dominance in auxiliary 
two-player games. For two players i �= j and every completely mixed σ−ij , let �(σ−ij ) be the two-player game where
i and j have the same payoff functions as in the original game, and simultaneously choose strategies from Si and 
Sj after they observe a realization s−ij drawn from σ−ij . In this auxiliary game, denote for every si ∈ Si by s̄i the 
constant strategy of i that plays si regardless of the realized s−ij , and define for every sj ∈ Sj the constant strategy s̄j
analogously. Then s∗

i
� s∗

j
if and only if in every game �(σ−ij ), either s̄∗

i
strictly interior dominates every other constant 

strategy s̄i �= s̄∗ , or s̄∗ is strictly interior dominated by some constant strategy s̄j �= s̄∗.

i j j

7
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Definition 2. A tremble profile ε assigns a positive number ε(si) > 0 to every player i and every 
pure strategy si ∈ Si . Given a tremble profile ε, write �ε

i for the set of ε-strategies of player i, 
namely:

�ε
i := {σi ∈ �(Si ) : ∀si ∈ Si , σi(si) ≥ ε(si)} .

Following Selten (1975), we call the strategy profile (σ ◦
i )i∈I an ε-constrained equilibrium if for 

each i,

σ ◦
i ∈ arg max

σi∈�ε
i

ui(σi, σ
◦−i ).

Note that �ε
i is compact and convex. It is also non-empty when ε is close enough to 0. By 

standard results, whenever ε is small enough so that �ε
i is non-empty for each i, an ε-constrained 

equilibrium exists.
The key building block for PCE is ε-PCE, which is an ε-constrained equilibrium where the 

tremble profile is “co-monotonic” with � in the following sense:

Definition 3. Tremble profile ε is player compatible if for all players i, j and strategies s∗
i , s∗

j

such that s∗
i � s∗

j , we have ε(s∗
i ) ≥ ε(s∗

j ). An ε-constrained equilibrium where ε is player com-
patible is called a player-compatible ε-constrained equilibrium (or ε-PCE).

The condition on ε says the minimum weight i could assign to s∗
i is no smaller than the 

minimum weight j could assign to s∗
j in the constrained game,

min
σi∈�ε

i

σi(s
∗
i ) ≥ min

σj ∈�ε
j

σj (s
∗
j ).

This is a “cross-player tremble restriction,” that is, a restriction on the relative probabilities of 
trembles by different players. Note that this restriction, like the player compatibility relation, 
depends on the players’ preferences over distributions on S but not on the particular utility repre-
sentation. This invariance property distinguishes player-compatible trembles from other models 
of stochastic behavior such as the stochastic terms in logit best responses. Our learning founda-
tion will interpret these trembles not as mistakes, but as deliberate experiments by agents trying 
to learn how others play.

As is usual for tremble-based equilibrium refinements, we now define PCE as the limit of a 
sequence of ε-PCE where ε → 0.

Definition 4. A strategy profile (σ ∗
i )i∈I ∈ ×i�(Si ) is a player-compatible equilibrium (PCE)

if there exists a sequence of player-compatible tremble profiles ε(t) → 0 and an associated se-
quence of strategy profiles (σ (t)

i )i∈I , where each σ (t) is an ε(t)-PCE, such that σ (t) → σ ∗.

The cross-player restrictions embodied in player-compatible trembles translate into analogous 
restrictions on PCE, as shown in the next result.

Proposition 3. For any PCE σ ∗, player k, and strategy s̄k such that σ ∗
k (s̄k) > 0, there exists a 

sequence of totally mixed strategy distributions σ (t) → σ ∗ such that
−k −k

8
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(i) for every pair i, j �= k with s∗
i � s∗

j ,

lim inf
t→∞

σ
(t)
i (s∗

i )

σ
(t)
j (s∗

j )
≥ 1;

and (ii) s̄k is a best response for k against every σ (t)
−k .

The proof is in the Appendix, as are the proofs of subsequent results except where otherwise 
stated.

Treating each σ (t)
−k as a totally mixed approximation of σ ∗−k , in a PCE each player k essentially 

best responds to a totally mixed strategy distribution that respects player compatibility.
It is easy to show that every ε-PCE respects player compatibility up to the “adding up con-

straint” that probabilities on different strategies must sum up to 1 and i must place probability 
no smaller than ε(s′

i ) on strategies s′
i �= s∗

i . The “up to” qualification disappears in the ε(t) → 0
limit because the required probabilities on s′

i �= s∗
i tend to 0.

Since PCE is defined as the limit of ε-equilibria for a restricted class of trembles, the set of 
PCE is a subset of trembling-hand perfect equilibria; the next result shows this subset is not 
empty. It uses the fact that the tremble profiles with the same lower bound on the probability of 
each action satisfy the compatibility condition in any game.

Theorem 1. A PCE exists in every finite game.

2.3. Learning and player-compatible trembles

Sections 4 and 5 provide a microfoundation for the player-compatible trembles that form the 
core innovation of PCE in a model with overlapping generations of agents in each player role. 
To preview the results, Section 4 presents a general sufficient condition for agents in the role of 
player i to experiment more with s∗

i than player-j agents do with s∗
j over their lifetimes that is 

applicable across a range of learning environments and learning policies. Section 5 completes 
the story by showing that in a class of games that includes our Section 3 examples, the player-
compatibility condition s∗

i � s∗
j implies Section 4’s sufficient condition for the rational learning 

policy and for weighted fictitious play. To analyze rational behavior, we consider agents who start 
with the same prior over the play of their opponents. We believe we could extend this conclusion 
to agents with slightly different priors using a stronger notion of player compatibility, but we do 
not pursue this result here.8

Like any game-theoretic equilibrium concept, PCE provides a reduced form that allows ana-
lysts to study comparative statics in various applications without needing to solve the dynamic 
learning problem anew in each of them. PCE considers the limit as trembles tend to zero for all 
players, which imposes some extra restrictions that we do not microfound. In particular, the right 
analog to vanishingly small trembles in the learning framework depends on details of the agents’ 

8 To do this, we would measure the “strength” of the compatibility ranking by saying that i is λ more player-compatible 
with s∗

i
than j is with s∗

j
if the inequality in the definition s∗

i
� s∗

j
holds for all σ̃ ∈ �◦(S) satisfying ||marg−ij (σ ) −

marg−ij (σ̃ )|| ≤ λ. We believe that our learning foundation would extend to cases where the agents’ priors are sufficiently 
close compared to λ.
9
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learning policies such as whether i, j experiment enough to provide data for −ij , as well as on 
fine structure of the priors near the boundary of the probability simplex (Fudenberg et al., 2017). 
Our microfoundation focuses on the novel cross-player implications of learning that are implied 
by a broad class of learning policies in all steady states.

In the Online Appendix, we expand the game to include duplicate copies of some of the 
original strategies, where two strategies are duplicates if they provide exactly the same payoff 
and exactly the same information.9 If s∗

i � s∗
j in the original game, then in the expanded game 

we impose the cross-player tremble restriction that the probability of i trembling onto the set of 
copies of s∗

i is larger than the probability of j trembling onto the set of copies of s∗
j . The way 

we update our PCE definition in the presence of duplicates fits our interpretation of trembles as 
experimentation frequencies: As we show, the sum of i’s lifetime experimentation frequencies 
with all duplicates of s∗

i is independent of the number of duplicates under both rational behavior 
and weighted fictitious play. We show that the set of PCE in the expanded game with these new 
tremble restrictions is the same as the set of PCE in the original game.

3. Examples of PCE

In this section, we study examples of games where PCE rules out unintuitive Nash equilibria. 
We will also use these examples to distinguish PCE from existing refinements.

3.1. The restaurant game

We start with a complete-information game where PCE differs from other solution con-
cepts.

Example 1. There are three players in the game: a restaurant (r), a food critic (c), a regular diner 
(d). Simultaneously, the restaurant decides between ordering high-quality (H) or low-quality (L) 
ingredients, while the critic and the diner decide whether to go eat at the restaurant (R) or order 
pizza (Z) and eat at home. The utility from Z is normalized to 0. If both customers choose Z, 
the restaurant also gets 0 payoff. Otherwise, the restaurant’s payoff depends on the ingredient 
quality and clientele. Choosing L yields a profit of +2 per customer while choosing H yields 
a profit of +1 per customer. In addition, if the food critic is present she will write a review 
based on ingredient quality, which affects the restaurant’s payoff by ±2.5. Each customer gets 
a payoff of x < −1 from consuming food made with low-quality ingredients and a payoff of 
y > 0.5 from consuming food made with high-quality ingredients, while the critic gets an addi-
tional +1 payoff from going to the restaurant and writing a review (regardless of food quality). 
Customers each incur a 0.5 congestion cost if they both go to the restaurant. We depict this sit-
uation in the game tree below, with c and d subscripts denoting strategies of the critic and the 
diner.

9 Two strategies with the same payoffs that give different information about opponents’ play are not equivalent in our 
learning model.
10
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The strategies of the two customers affect each other’s payoffs, so the critic and the diner 
are not non-interacting players. In particular, they cannot be mapped into two types of the same 
agent in a Bayesian game.

The strategy profile (L, Zc, Zd ) is a proper equilibrium,10 sustained by the restaurant’s be-
lief that when at least one customer plays R, it is far more likely that the diner deviated to 
patronizing the restaurant than the critic, even though the critic has a greater incentive to go 
to the restaurant since she gets paid for writing reviews. It is also an extended proper equilib-
rium.11

We claim that Rc � Rd . Note that for any totally mixed correlated strategy distribution σ
that makes the diner indifferent between Zd and Rd , we must have uc(Rc, σ̃−c) ≥ 0.5 for any 
distribution σ̃ that agrees with σ in terms of the restaurant’s play. The critic’s utility from Rc is 
minimized when the diner chooses Rd with probability 1, but even then the critic gets 0.5 higher 
utility from going to a crowded restaurant than the diner gets from going to an empty restaurant, 
holding fixed food quality at the restaurant. This shows Rc � Rd .

Whenever σ (t)
c (Rc)/σ (t)

d (Rd ) > 1
4 , the restaurant strictly prefers H over L. Thus by Proposi-

tion 3, there is no PCE where the restaurant plays L with positive probability. �

3.2. The link-formation game

In the next example, PCE makes different predictions in two versions of a game with different 
payoff parameters, while all other solution concepts we know of make the same predictions in 
both versions.

Example 2. There are 4 players in the game, split into two sides: North and South. The players 
are named North-1, North-2, South-1, and South-2, abbreviated as N1, N2, S1, and S2.

These players engage in a strategic link-formation game. Each player simultaneously takes an 
action: either Inactive or Active. An Inactive player forms no links. An Active player forms a 
link with every Active player on the opposite side. (Two players on the same side cannot form 
links.) For example, suppose N1 plays Active, N2 plays Active, S1 plays Inactive, and S2 plays

10 Recall that proper and perfect equilibrium coincide in games with only 2 strategies per player.
11 (L, Zc , Zd ) is an extended proper equilibrium, because scaling the critic’s payoff by a large positive constant makes 
it more costly for the critic to deviate to Rc than for the diner to deviate to Rd .
11
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Active. Then N1 creates a link to S2, N2 creates a link to S2, S1 creates no links, and S2 creates 
links to both N1 and N2.

Each player i is characterized by two parameters: cost (ci) and quality (qi). Cost refers to the 
private cost that a player pays for each link they create. Quality refers to the benefit that a player 
provides to others who link to them. A player who forms no links gets a payoff of 0. In the above 
example, the payoff to North-1 is qS2 −cN1 and the payoff to South-2 is (qN1 −cS2) +(qN2 −cS2).

We consider two specifications of the payoff functions. In the anti-monotonic version on the 
left, players with a higher cost have a lower quality. In the co-monotonic version on the right, 
players with a higher cost have a higher quality. There are two pure-strategy Nash outcomes 
for each version: all links form or no links form. “All links form” is the unique PCE outcome 
in the anti-monotonic case, while both “all links” and “no links” are PCE outcomes under co-
monotonicity.

Anti-monotonic

Player Cost Quality

North-1 14 30
North-2 19 10

South-1 14 30
South-2 19 10

Co-monotonic

Player Cost Quality

North-1 14 10
North-2 19 30

South-1 14 10
South-2 19 30

PCE makes different predictions in these two versions of the game because the compatibility 
structure with respect to own quality is reversed. In both versions, ActiveN1 � ActiveN2, but 
N1 has high quality in the anti-monotonic version, and low quality in the co-monotonic ver-
sion. Thus, in the anti-monotonic version but not in the co-monotonic version, player-compatible 
trembles lead to the high-quality counterparty choosing Active at least as often as the low-quality 
counterparty, which means Active has a positive expected payoff even when one’s own cost is 
high.

In contrast, the set of equilibria that satisfy extended proper equilibrium, proper equilibrium, 
trembling-hand perfect equilibrium, p-dominance, Pareto efficiency, and strategic stability do not 
depend on whether payoffs are anti-monotonic or co-monotonic, as shown in Proposition OA.1 
in the Online Appendix. �
12
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3.3. Signaling games

Recall that a signaling game is a two-player Bayesian game, where P1 is a sender who knows 
their own type θ , and P2 only knows that P1’s type is drawn according to the distribution λ ∈
�(
) on a finite type space 
. After learning their type, the sender sends a signal s ∈ S to the 
receiver. Then, the receiver responds with an action a ∈ A. Utilities u1(s, a; θ) and u2(s, a; θ)

depend on the sender’s type θ , the signal s, and the action a.
Fudenberg and He (2018)’s compatibility criterion is defined only for signaling games. It 

does not use limits of games with trembles, but instead restricts the beliefs that the receiver can 
have about the sender’s type. That sort of restriction does not seem easy to generalize beyond 
games with observed actions, while using trembles allows us to define PCE for general games 
in strategic form. As we will see, the more general PCE definition implies the compatibility 
criterion in signaling games.

With each sender type viewed as a different player, this game has |
| +1 players, I = 
 ∪{2}, 
where the strategy set of each sender type θ is Sθ = S while the strategy set of the receiver is 
S2 = AS , the set of signal-contingent plans. So a mixed strategy of θ is a possibly mixed signal 
choice σ1(· | θ) ∈ �(S), while a mixed strategy σ2 ∈ �(AS) of the receiver is a mixed plan about 
how to respond to each signal. We let σ2(· | ·) denote the behavior strategy corresponding to σ2; 
it is defined by σ2(a | s) := σ2({s2 ∈ S2 : s2(s) = a}).

Fudenberg and He (2018) define type compatibility for signaling games. A signal s∗ is more 
type-compatible with θ than with θ ′ if for every behavioral strategy σ2,

u1(s
∗, σ2; θ ′) ≥ max

s′ �=s∗ u1(s
′, σ2; θ ′)

implies

u1(s
∗, σ2; θ) > max

s′ �=s∗ u1(s
′, σ2; θ).

They also define the compatibility criterion, which imposes restrictions on off-path beliefs in 
signaling games. Consider a Nash equilibrium (σ ∗

1 , σ ∗
2 ). For any signal s∗ and receiver action 

a with σ ∗
2 (a | s∗) > 0, the compatibility criterion requires that a best responds to some belief 

p ∈ �(
) about the sender’s type such that, whenever s∗ is more type-compatible with θ than 
with θ ′ and s∗ is not equilibrium dominated12 for θ , p satisfies p(θ ′)

p(θ)
≤ λ(θ ′)

λ(θ)
.

Since every mixed strategy of the receiver is payoff-equivalent a behavioral strategy, it is easy 
to see that type compatibility implies s∗

θ � s∗
θ ′ .13 The next result shows that when specialized to 

signaling games, all PCE pass the compatibility criterion.

Proposition 4. In a signaling game, every PCE is a Nash equilibrium satisfying the compatibility 
criterion of Fudenberg and He (2018).

This proposition in particular implies that in the beer-quiche game of Cho and Kreps (1987), 
the quiche-pooling equilibrium is not a PCE, as it does not satisfy the compatibility criterion.

12 Signal s∗ is not equilibrium dominated for θ if maxa∈A u1(s∗, a; θ) > u1(s, σ∗
2 ; θ) for every s with σ∗

1 (s | θ) > 0.
13 The converse does not hold. We defined type compatibility to require testing against all receiver strategies and not 
just the totally mixed ones, so it is possible that s∗θ � s∗

θ ′ but s∗ is not more type-compatible with θ than with θ ′ , 
so type-compatibility is harder to satisfy than player compatibility. We now realize that we could have restricted type 
compatibility to only consider totally mixed strategies, and all of the results of Fudenberg and He (2018) would still hold.
13
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4. Index learning policies and index compatibility

This section characterizes a general class of “index learning policies” that lead i to experi-
ment more with s∗

i than j does with s∗
j . The next section shows that optimal learning behavior 

and weighted fictitious play belong to this class in “factorable” games, when s∗
i � s∗

j . Together, 
these sections link the player-compatibility relation with agents’ learning behavior under various 
learning policies, providing a learning foundation for the tremble restrictions central to PCE.

The learning problem the players face depends on what they observe about the play of others, 
which in turn depends on the extensive form of the game, denoted by �. This game has a set 
of players i ∈ I and also a player 0 that we will use to model Nature’s moves. The collection 
of information sets of player i ∈ I is written as Hi . At each h ∈ Hi , player i chooses an action 
ah from the finite set of possible actions Ah. A pure strategy of i specifies an action at each 
information set h ∈ Hi . We denote by Si the set of all such strategies. Let Z be the set of 
terminal vertices of �. Also, let z(s) denote the terminal vertex reached under the pure strategy 
profile (including Nature’s moves) s ∈ ×i∈I∪{0}Si .

Let Î ⊆ I be the subset of players who only have one information set in the game tree. To sim-
plify exposition and proofs, we only provide a foundation of the cross-player tremble restrictions 
for the players in Î. Recall that for the examples discussed in Section 3, only players who have 
one information set are ranked by player-compatibility. It is not required that every player only 
has one information set: for example, the receiver in a signaling game has multiple information 
sets, but the foundation we provide will only apply to the trembles of different types of senders.

Consider an agent born into player role i who maintains this role throughout their life. They 
have a geometrically distributed lifetime with probability 0 ≤ γ < 1 of survival between periods. 
Each period, the agent plays the game �, choosing a strategy si ∈ Si . Then, with probability γ , 
they continue into the next period and play the game again, and with complementary probability 
they exit the system. We will compare the average behavior of agents in different player roles 
who share the same survival chance.

Each player is equipped with a finite set of observations Oi and a feedback function oi :
Z → Oi that maps the terminal node reached to an observation. We assume each player has 
perfect recall and remembers their chosen strategy. Not all observations in Oi may be possible 
when i uses a strategy si . We denote by Oi[si] the possible observations when using si , formally 
Oi[si] := {oi (z(si , s−i )) : s−i ∈ S−i}.

Definition 5. The set of all finite histories of all lengths for i is Yi := ∪t≥0(Si × Oi )
t . For 

a history yi ∈ Yi and si ∈ Si , the subhistory yi,si is the (possibly empty) subsequence of yi

containing those periods where the agent played si .

In the learning framework, each agent chooses their strategy based on their history. To com-
pare players i and j ’s relative experimentation probabilities, we need a notion of “equivalence” 
to relate their histories to each other, for in general Oi �= Oj . Another complication is that i’s 
observations may include j ’s actions, so comparing i and j ’s behavior will be difficult if i’s 
behavior depends sensitively on how j played in the past.

We introduce a concept of pairing between i’s observations and j ’s observations. At the 
heart of this concept is a bijection ϕ between Si and Sj , together with a family of equivalence 
relations between i’s possible observations after si and j ’s possible observation after ϕ(si), with 
one relation for each si ∈ Si .
14
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Definition 6. For i, j ∈ Î, a pairing (ϕ, (≡si )si∈Si
) consists of a bijection ϕ : Si → Sj and a 

family of equivalence relations (≡si )si∈Si
, where each ≡si is an equivalence relation between 

the elements of {si} ×Oi[si] and {ϕ(si)} ×Oj [ϕ(si)], such that for each pure strategy profile s̃
and si ∈ Si , (si , oi (z(si , ̃s−i ))) ≡si (ϕ(si), oj (z(ϕ(si), ̃s−j ))).

In the sequel, we will study learning policies such that whenever j ’s policy plays s∗
j following 

a history, i’s policy plays s∗
i following any history that is period-by-period equivalent, where 

equivalence is defined with respect to some pairing (ϕ, (≡si )si∈Si
) satisfying ϕ(s∗

i ) = s∗
j . By the 

definition of a pairing, holding fixed i’s strategy si and −ij ’s play, all observations of i that 
result from changing j ’s play belong to the same equivalence class for ≡si . If j ’s policy plays 
s∗
j following a history yj and i’s policy plays s∗

i following a period-by-period equivalent history 
yi , then i must also play s∗

i following any other history y′
i that differ from yi only in terms of j ’s 

play. This rules out i’s behavior depending too sensitively on observations of j ’s play.
Consider Example 1 when the critic and the diner observe all other players’ actions if they 

choose R, but observe nothing if they choose Z. That is,

Oc = Od = {(L,R), (L,Z), (H,R), (H,Z),∅}.
Consider the natural bijection ϕ(Rc) = Rd and ϕ(Zc) = Zd , and define the equivalence relation 
≡Rc based on the following two equivalence classes of possible observations after Rc and Rd :

{(Rc, (L,R)), (Rd , (L,R)), (Rc, (L,Z)), (Rd , (L,Z))} ,

{(Rc, (H,R)), (Rd , (H,R)), (Rc, (H,Z)), (Rd , (H,Z))} .

The two equivalence classes of ≡Rc represent whether the restaurant is observed to play L or H. 
Also, since Oc[Zc] = Od [Zd ] = {∅}, let ≡Zc be the equivalence relation where all elements in 
{(Zc, ∅), (Zd , ∅)} are equivalent to each other. They both represent having no observations of 
the restaurant’s play. It is clear that given any pure strategy profile s, (Rc, s−c) and (Rd, s−d)

lead to the same histories, up to equivalence defined by this pairing.
We extend the notion of equivalence to histories with more than one period in the natural way.

Definition 7. Given a pairing (ϕ, (≡si )si∈Si
), say i’s subhistory yi,si is equivalent to j ’s sub-

history yj,sj , written as yi,si ≡ yj,sj , if sj = ϕ(si) and the subhistories are equivalent period by 
period according to ≡si .

Equivalence of yi,si and yj,sj says i has played si as many times as j has played sj , and that 
the sequence of observations that i encountered from experimenting with si are the “same” as 
those that j encountered from experimenting with sj .

For example, consider the histories for the critic and the diner in Table 1. The critic’s subhis-
tory for Rc is equivalent to the diner’s subhistory for Rd (under the pairing previously given). 
This equivalence arises because the subhistories yc,Rc and yd,Rd

contain the same sequences of 
the restaurant’s play (even though the two agents have different observations in terms of how 
often the other patron goes to the restaurant).

We now turn to the agents’ learning policies. Each agent decides which strategy to use in each 
period based on their history so far. We assume that this learning policy is a deterministic map 
(which is without loss of generality for expected-utility maximizers), and denote it ri : Yi → Si .
15
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Table 1
The two histories yc (for the critic, with length 5) and yd (for the 
diner, with length 4) have equivalent subhistories for R.

period 1 2 3 4 5

yc:
own strategy Rc Zc Zc Zc Rc

observation (L,Z) ∅ ∅ ∅ (H,Z)

yd :
own strategy Zd Rd Zd Rd

observation ∅ (L,R) ∅ (H,Z)

Definition 8. A learning policy ri for i is an index policy if there are index functions (ιsi )si∈Si

with each ιsi mapping si -subhistories to real numbers, such that ri(yi) ∈ arg max
si∈Si

{
ιsi (yi,si )

}
for 

all yi ∈ Yi .

If an agent uses an index policy, we can think of their behavior in the following way. At each 
history, they compute an index for each strategy si ∈ Si based on the subhistory of those periods 
where they chose si , and play a strategy with the highest index.14 The best-known example 
of an index policy is the Gittins index (Gittins, 1979). Some heuristics for learning problems, 
such as weighted fictitious play (Cheung and Friedman, 1997), are also index policies. The key 
restriction in an index policy is that each strategy’s index depends only on the observations when 
that strategy was played. Note that index policies are deterministic, unlike some heuristics such 
as Thompson sampling (Thompson, 1933).

Finally, we define a notion of the relative compatibility of index policies ri and rj with various 
strategies.

Definition 9. Let i, j ∈ Î be distinct players and fix a pairing (ϕ, (≡si )si∈Si
). For two index 

policies ri and rj and strategy s∗
i , we say that ri is more index-compatible with s∗

i than rj is with 
s∗
j = ϕ(s∗

i ) if for any histories yi, yj and any strategy s′
i ∈ Si , s′

i �= s∗
i satisfying

• yi,s∗
i
≡ yj,s∗

j
and yi,s′

i
≡ yj,ϕ(s′

i )• s∗
j has weakly the highest index for j ,

then s′
i does not have the weakly highest index for i.

Suppose that an agent in the role of i starts with the empty history. Every period, the agent 
chooses a strategy by applying a learning policy ri to their current history, then plays the game 
with opponents’ strategy drawn from the −i marginal of the product distribution σ . At the end 
of the period, the agent updates their history by concatenating their play and their observation to 
their current history, then enters the next period with probability 1 − γ . If the agent continues, 
in the next period they apply ri to their updated history and their opponents’ strategy is given by 
another draw from σ , and so forth. We call σ the social distribution. It, together with the agent’s 
learning policy, generates a stochastic process Xt

i describing i’s strategy in period t ; denote its 
distribution by Pri ,σ .

14 To handle possible ties, we can introduce a strict order over each agent’s strategy set, and specify that if two strategies 
have the same index the agent plays the one that is higher ranked.
16
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Definition 10. Let Xt
i be the Si -valued random variable representing i’s play in period t given ri

and σ . Player i’s discounted lifetime play under the social distribution σ and learning policy ri
is φi(·; ri, σ) : Si → [0, 1], where for each si ∈ Si

φi(si; ri, σ−i ) := (1 − γ )

∞∑
t=1

γ t−1 · Pri ,σ {Xt
i = si}.

Each newcomer agent in the role of i expects to play each si a share φi(si; ri , σ) of their 
lifetime.

The key result of this section, Proposition 5, shows that index compatibility is a sufficient 
condition for agents in the i-role to play s∗

i more frequently than those in the j -role play s∗
j . 

This result is not immediate, because the index-compatibility relation only applies when two 
agents have equivalent histories, which typically does not hold during the dynamic process of 
experimentation.

Proposition 5. Suppose i, j ∈ Î are distinct players and s∗
i ∈ Si , s∗

j ∈ Sj , ri , rj are index policies 
for i, j . Suppose there is some pairing (ϕ, (≡si )si∈Si

)) such that ϕ(s∗
i ) = s∗

j and ri is more 
index-compatible with s∗

i than rj is with s∗
j with respect to the pairing. Then φi(s

∗
i ; ri , σ−i ) ≥

φj (s
∗
j ; rj , σ−j ) for any 0 ≤ γ < 1 and any social distribution σ .

The proof extends the coupling argument in the proof of Fudenberg and He (2018)’s 
Lemma 2, which only applies to the Gittins index in signaling games, and also fills in a miss-
ing step (Lemma 4) that the earlier proof implicitly assumed. To deal with the issue that i
and j learn from endogenous data that diverge as they undertake different experiments, we 
couple the learning problems of i and j using what we call response paths S ∈ ((S)N )∞
where N = maxi |Si |. We can think of S as a two-dimensional array of strategy profiles, 
S = ((S1,1, S1,2, ..., S1,N ), (S2,1, S2,2, ..., S2,N ), ...), where St,ni

∈ S for every t ≥ 1, 1 ≤
ni ≤ N . We may enumerate each player’s strategy set Si and interchangeably refer to each 
strategy si ∈ Si with its assigned number nsi ∈ {1, ..., N}. For a given path and learning pol-
icy ri for player i, imagine running the policy against the data-generating process where the t-th 
time i plays the ni -th strategy in Si , i is matched up with opponents who play the strategies 
St,ni

. Given a learning policy ri , each S induces a deterministic infinite history of i’s strategies 
yi(S, ri) ∈ (Si )

∞. (For ni > |Si |, the values of (St,ni
)t≥1 do not matter for the induced history.) 

We show that under the hypothesis that ri is more index-compatible with s∗
i than rj is with s∗

j , the 
weighted lifetime frequency of s∗

i in yi(S, ri) is larger than the frequency of s∗
j in yj (S, rj ) for 

every S, where play in different periods of the infinite histories yi(S, ri), yj (S, rj ) is weighted
by the probabilities of surviving into these periods, just as in the definition of discounted lifetime 
play.

Lemma 4 in the Appendix shows that when i and j face i.i.d. draws of opponents’ plays 
from a fixed social distribution σ , the discounted lifetime plays are the same as if they each 
faced a random response path S drawn at birth according to the (infinite) product measure over 
((S)N )∞ whose marginals (on each copy of (S)N) are the product distribution on (S)N with 
marginal σ ∈ �(S).
17
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5. Index compatibility and player compatibility in factorable games

Section 4 proves that whenever index-strategy pairs (ri, s∗
i ) and (rj , s∗

j ) satisfy index com-
patibility, index policy ri uses s∗

i more often than rj uses s∗
j against any social distribution σ . 

Index compatibility is a joint restriction on the agents’ learning policy and the game’s feedback 
structure (O, o), which gives the domain that the learning policies are defined on. This section 
shows that player compatibility implies index compatibility for rational behavior and weighted 
fictitious play in a class of factorable games. Factorability applies to the examples discussed in 
Section 3 for the players ranked by compatibility.

5.1. Factorability and isomorphic factoring

In factorable games, agent i’s observation is just their utility: oi(si , s−i ) = ui(si , s−i ), where 
ui(si , s−i ) is the utility of i at the terminal node z(si, s−i ) reached by the strategy profile (si, s−i ). 
In general, i’s payoff ui(si , s−i ) does not need to reveal the actions that others’ strategies s−i pick 
at all −i information sets in the game tree. The definition of factorability puts restrictions on the 
extensive-form game tree � to discipline what i can learn from own payoffs.

Suppose i ∈ Î. Since i has one information set, we can identify different strategies in Si as 
different actions at this information set. Factorability says that the different moves si that i could 
take represent “orthogonal” learning opportunities. Choosing action si ∈ Si against any strategy 
profile of −i identifies all of the opponents’ actions that can be payoff-relevant for that action 
via i’s ex-post observation of their own payoff. At the same time, i’s payoff does not reveal 
any information about the payoff consequences of choosing any other action s′

i �= si . From i’s 
perspective, it is as if the game tree can be “factored” into disjoint parts based on i’s move, and 
playing each si ∈ Si lets i learn how s−i play at all payoff-relevant −i information sets in the 
si -part of the game tree, but provides no information about s−i in any other part of the tree. We 
now make this idea formal.

For an information set h of j with j �= i, write Ph for the partition on S−i where two strategy 
profiles s−i , s′−i are in the same element of the partition if they prescribe the same play on h. 
That is, the partition elements in Ph are {s−i ∈ S−i : s−i (h) = ah} for ah ∈ Ah. Thus partition Ph

is perfectly informative about play on h, but gives no other information.

Definition 11. For each player i ∈ Î and strategy si ∈ Si , let �i[si] be the coarsest partition of 
S−i that makes s−i �→ ui(si , s−i ) measurable. The game � is factorable for i if:

1. For each si ∈ Si there exists a (possibly empty) collection of −i’s information sets Fi[si] ⊆
H−i so that �i[si] = ∨

h∈Fi [si ] Ph. (The notation 
∨

means coarsest common refinement. 
When it is applied to an empty collection, it yields the coarsest possible partition.)

2. For two strategies si �= s′
i , Fi[si] ∩ Fi[s′

i] = ∅.

When � is factorable for i, we refer to Fi[si] as the si -relevant information sets, a terminology 
we now justify. In general, i’s payoff from playing si can depend on the profile of −i’s actions 
at all opponent information sets. Condition (1) implies that only opponents’ actions on Fi[si]
18
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matter for i’s payoff after choosing si , and furthermore this dependence is one-to-one. That is,

ui (si , s−i ) = ui

(
si , s

′−i

) ⇔ (∀h ∈ Fi [si] , s−i (h) = s′−i (h)
)
.

Thus when i uses the strategy si , different strategy profiles s−i for i’s opponents lead to different 
payoffs for player i, which implies that i’s learning cannot be blocked by another player: By 
choosing si , i can always use their own payoff to identify actions on Fi[si] regardless of what 
happens elsewhere in the game tree.15 It also shows that if � is factorable for i, then Fi[si] is 
uniquely defined for all si . Suppose there were two collections (Fi[si])si∈Si

and (F̃i[si])si∈Si

with Fi[si]\F̃i[si] �= ∅ for some si ∈ Si that both satisfy Condition (1) of Definition 11. Then 
there are two −i profiles s−i , s′−i that match on F̃i[si] but not on Fi[si]. But then we get both 
ui(si , s−i ) = ui(si , s′−i ) and ui(si , s−i ) �= ui(si , s′−i ), a contradiction. Finally, this requirement 
implies an algorithm for finding Fi[si], provided the game is factorable for i: start with Fi[si] as 
the empty set. For each h ∈ H−i such that |Ah| ≥ 2, consider any pair of −i strategies s−i , s′−i ∈
S−i such that s−i , s′−i agree everywhere except on h. Add h to Fi[si] if and only if ui(si , s−i ) �=
ui(si , s′−i ).

Condition (2) implies that i cannot extrapolate the payoff consequence of a different action 
s′
i �= si through playing si (provided i’s prior is independent about opponents’ play on different 

information sets). This is because there is no intersection between the si-relevant information 
sets and the s′

i -relevant ones — the “learning opportunities” associated with different moves do 
not overlap in the kinds of data that they provide. Implicit here is the requirement that i does not 
learn about the payoff consequence of s′

i from playing si no matter what the other players −i are 
doing. In particular, this means that player i cannot “free ride” on others’ experiments and learn 
about the consequences of various risky strategies while playing a safe one that is myopically 
optimal.

In short, Condition (1) ensures i gets information about play in the same part of the game tree 
every time they play si (instead of learning about play in two different parts of the tree depending 
on someone else’s strategy), while Condition (2) guarantees that there is no interaction between 
learning about different actions.

If Fi[si] is empty, then si is a kind of “opt out” action for i. After choosing si , i receives 
the same utility from every reachable terminal node and gets no information about the payoff 
consequences of any of their other actions.

5.1.1. Examples of factorable games
We now illustrate factorability using the examples from Section 3 and some other general 

classes of games.

The restaurant game Consider the restaurant game from Example 1. Since x < −1 and y > 0.5, 
we have x �= y and x �= y + 0.5. By choosing R, the customer’s payoff perfectly reveals others’ 
play. By choosing Z, the customer always gets 0 payoff (these nodes are colored in the diagram 
below) and so cannot infer anyone else’s play.

15 It is easy but expositionally costly to extend this to the case where several actions on Ah lead to the same payoff for i.
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The restaurant game is factorable for the critic and the diner. Let Fi[Ri] consist of the two 
information sets of −i and let Fi[Zi] be the empty set for each i ∈ {c, d}. It is easy to verify that 
the two conditions of factorability are satisfied.

It is important for factorability that a customer who takes the “outside option” of ordering 
pizza gets the same payoff regardless of the restaurant’s play, and does not observe the restau-
rant’s quality choice even if the other customer patronizes the restaurant. Factorability rules out 
this sort of “free information,” so that when we analyze the non-equilibrium learning problem we 
know that each agent can only learn an action’s payoff consequences by playing it themselves. 
An agent who does not choose the learning opportunity related to an action si cannot incidentally 
learn about its payoffs.

The link-formation game Consider the link-formation game from Example 2. The payoff for a 
player choosing Inactive is always 0, whereas the payoff for a player choosing Active exactly 
identifies the play of the two players on the opposite side. We can let Fi[Activei] consist of the 
information sets of the other two agents on the other side of i and let Fi[Inactivei] be empty. This 
specification of the si-relevant information sets shows the game is factorable for every player.

Binary participation games More generally, � is factorable for i whenever it is a binary par-
ticipation game for i.

Definition 12. � is a binary participation game for i if the following conditions are satisfied.

1. i has a unique information set with two actions, labeled In and Out.
2. All paths of play in � pass through i’s information set.
3. All paths of play where i plays In pass through the same information sets.
4. Terminal vertices associated with i playing Out all have the same payoff for i.
5. Terminal vertices associated with i playing In all have different payoffs for i.

Action Out is an outside option for i that leads to a constant payoff regardless of others’ play. 
We are implicitly assuming in part (5) of the definition that the game has generic payoffs for i
after choosing In, in the sense that changing the action at any one information set on the path of 
play will change i’s payoff.

If � is a binary participation game for i, let Fi[In] be the collection of −i information sets 
encountered in paths of play where i chooses In. Let Fi[Out] be the empty set. We see that 
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� is factorable for i. Clearly Fi[In] ∩ Fi[Out] = ∅, so Condition (2) of factorability is satisfied. 
When i chooses the strategy In, the tree structure of � implies different profiles of play on Fi[In]
must lead to different terminal nodes, and the generic payoff condition means Condition (1) of 
factorability is satisfied for strategy In. When i plays Out, i gets the same payoff regardless of 
the others’ play, so Condition (1) of factorability is satisfied for strategy Out.

The restaurant game is a binary participation game for the critic and the diner, where ordering 
pizza is the outside option. The link-formation game is a binary participation game for every 
player, where Inactive is the outside option.

Signaling to multiple audiences To give a different class of examples of factorable games, 
consider a game of signaling to one or more audiences. To be precise, Nature moves first and 
chooses a type for the sender, drawn according to some known distribution over a finite set of 
types, 
. The sender then chooses a signal s ∈ S, observed by all receivers r1, ..., rnr . Each 
receiver then simultaneously chooses an action. The profile of receiver actions, together with the 
sender’s type and signal, determine payoffs for all players. Viewing different types of senders as 
different players, this game is factorable for all sender types, provided payoffs are generic. This 
factorability arises because for each type i, Fi[s] is the set of nr information sets for the receivers 
after seeing signal s.

5.1.2. Examples of non-factorable games
The next result gives a necessary condition for factorability, which we then use to provide 

examples of non-factorable games. Suppose h is an information set of player j �= i. Player i’s 
payoff is independent of h if ui(ah, a−h) = ui(a

′
h, a−h) for all ah, a′

h, a−h, where ah, a′
h are 

actions on information set h, and a−h is a profile of actions on all other information sets in the 
game tree. If i’s payoff is not independent of the action taken at some information set h, then i
can always put h onto the path of play via a unilateral deviation at one of their information sets.

Proposition 6. Suppose the game is factorable for i ∈ Î, and let h∗ be any information set of 
some other player j such that i’s payoff is not independent of h∗. For every strategy profile, 
either h∗ is on the path of play, or we can change i’s action in the strategy profile such that h∗ is 
on the path of play.

This result follows from two lemmas.

Lemma 1. For any game that is factorable for i and any information set h∗ for player j �= i

where j has at least two different actions, if h∗ ∈ Fi[si] for some strategy si ∈ Si , then h∗ is 
always on the path of play when i chooses si .

Lemma 2. For any game that is factorable for i and any information set h∗ of player j �= i, 
suppose i’s payoff is not independent of h∗. Then 1) j has at least two different actions at h∗; 
and (2) there exists some strategy si ∈ Si so that h∗ ∈ Fi[si].

Consider the centipede game for three players below.
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Each player only has one information set, and 1 and 2’s payoffs are not independent of the 
(unique) information set of player 3. But, if both 1 and 2 choose “drop”, then no one step devi-
ation by either 1 or 2 can put the information set of 3 onto the path of play. Proposition 6 thus 
implies the centipede game is not factorable for either 1 or 2. Moreover, Fudenberg and Levine 
(2006) showed that in this game even very patient player 2’s may not learn to play a best re-
sponse to player 3, so that the strategy profile (drop, drop, pass) can persist even though it is not 
trembling-hand perfect. Intuitively, if agents in the role of player 1 only play “pass” as experi-
ments early on in their lives, then agents in the role of player 2 realize that they rarely get to play, 
which makes the value of experimenting with “pass” too small to be worth their while.

As another example, the Selten’s horse game displayed above is not factorable for 1 or 2 if the 
payoffs are generic, even though the conclusion of Proposition 6 is satisfied. On one hand, the 
information set of 3 must belong to both F1[Down] and F1[Across] because 3’s play can affect 
1’s payoff even if 1 chooses Across, since 2 could choose Down. On the other hand, this violates 
the factorability requirement that F1[Down] ∩ F1[Across] = ∅. The same argument shows the 
information set of 3 must belong to both F2[Down] and F2[Across], since when 1 chooses Down 
the play of 3 affects 2’s payoff regardless of 2’s play. So, again, F2[Down] ∩ F2[Across] = ∅ is 
violated.

Condition (2) of factorability also rules out games where i has two strategies that give the same 
information, but one strategy always has a worse payoff under all profiles of opponents’ play. In 
this case, we can think of the worse strategy as an informationally equivalent but more costly 
experiment than the better strategy. Reasonable learning policies (including rational learning) 
will not use such strategies, but we do not capture this feature in the general definition of PCE 
because our setup there only considers abstract strategy spaces Si and not an extensive-form 
game tree.16

16 It would be interesting to try to refine the definition of PCE to directly incorporate players’ information at the end of 
the game, using either our notion of a feedback function defined on the terminal nodes of an extensive-form game tree, 
or using the “signal function” approach of Battigalli and Guaitoli (1997) and Rubinstein and Wolinsky (1994).
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5.1.3. Isomorphic factoring
In order to compare the learning behavior of agents i and j , it is not enough that the game is 

factorable for each of them. We define the notion of isomorphic factoring, which requires that 
the different learning opportunities for i and j can be matched up into pairs that give the same 
information about −ij ’s play.

Definition 13. Let i, j ∈ Î. When � is factorable for both i and j , the factoring is isomorphic for 
i and j if there exists a bijection ϕ : Si → Sj such that Fi[si] ∩ H−ij = Fj [ϕ(si)] ∩ H−ij for 
every si ∈ Si .

This says the si -relevant information sets (for i) are the same as the ϕ(si)-relevant information 
sets (for j ), insofar as the actions of −ij are concerned. For example, the restaurant game is 
isomorphically factorable for the critic and the diner (under the bijection ϕ(Rc) = Rd, ϕ(Zc) =
Zd) because Fc[Rc] ∩ Hr = Fd [Rd] ∩ Hr = the singleton set containing the unique information 
set of the restaurant. As another example, all signaling games (with possibly many receivers as 
in Section 5.1.1) are isomorphically factorable for the different types of the sender. Similarly, the 
link-formation game is isomorphically factorable for pairs (N1, N2), and (S1, S2), but note that 
it is not isomorphically factorable for (N1, S1).

Factorability and isomorphic factoring let us construct a pairing (ϕ, (≡si )). For each si , the 
equivalence relation ≡si is such that (si, ui(si , ̃s−i )) ≡si (ϕ(si), uj (ϕ(si), ̂s−j ) if and only if 
s̃−i |Fi [si ]∩H−ij

= ŝ−j |Fj [ϕ(si )]∩H−ij
.

5.2. Rational learning in factorable games

We first consider rational agents who maximize expected discounted payoffs. This learning 
rule requires two additional elements: a Bayesian prior belief over others’ play and a discount 
factor. We assume that each agent i starts with a regular independent prior:

Definition 14. Agent i has a regular independent prior if their belief gi on ×h∈H−i
�(Ah) can 

be written as the product of full-support marginal densities gh
i : �(Ah) → R+ across different 

h ∈ H−i , so that gi((αh)h∈H−i
) = ∏

h∈H−i
gh

i (αh) with gh
i (αh) > 0 for all αh ∈ �◦(Ah).

Agent i believes that they face a social distribution σ where some unknown mixed action is 
played at every −i’s information set.17 We will require that their prior belief gi about these mixed 
actions satisfies two kinds of independence assumptions. First, i thinks actions at different −i

information sets are generated independently from these underlying mixed actions, whether the 
information sets belong to the same player or to different players. Furthermore, the agent holds 
independent beliefs about the mixed actions at different information sets.18

17 We assume that agents do not know Nature’s mixed actions, which must be learned just as the play of other players. 
If agents know Nature’s move, then a regular independent prior would be a density gi on ×h∈HI\{i}�(Ah) (noting that 
I\{i} is the set of non-Nature players other than i), so that gi ((αh)HI\{i} ) =

∏
h∈HI\{i} gh

i
(αh) with gh

i
(αh) > 0 for all 

αh ∈ �◦(Ah).
18 As Fudenberg and Kreps (1993) point out, an agent who believes two opponents are randomizing independently may 
nevertheless have subjective correlation in their uncertainty about the randomizing probabilities of these opponents. Here 
we study the natural special case where the agents’ prior beliefs about the opponents are independent, i.e., a product 
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The agent updates gi by applying Bayes rule to their history yi . If the game is a signaling 
game, for example, this independence assumption means that the senders only update their beliefs 
about the receiver’s response to a given signal based on the responses received to that signal, and 
that the senders’ beliefs about this response do not depend on the responses they have observed 
to other signals.

In addition to the survival chance 0 ≤ γ < 1 between periods, the agent further discounts 
future payoffs according to their patience 0 ≤ δ < 1, so their overall effective discount factor is 
0 ≤ δγ < 1.

Given a belief about the distribution of play at each information set of the opponents, we can 
calculate the Gittins index of each strategy si ∈ Si . Let νsi ∈ ×h∈Fi [si ]�(�(Ah)) be a belief over 
opponents’ mixed actions at the information sets in Fi[si]. The Gittins index of si under belief 
νsi is given by the maximum value of the following auxiliary optimization problem:

sup
τ≥1

Eνsi

{∑τ
t=1(δγ )t−1 · ui(si , (ah(t))h∈Fi [si ])

}
Eνsi

{∑τ
t=1(δγ )t−1

} , (1)

where the supremum is taken over all positive-valued stopping times τ ≥ 1. Here (ah(t))h∈Fi [si ]
means the profile of actions that −i plays on Fi[si] the t-th time that i uses si — by assumption 
about factorable games, only these actions and not actions elsewhere in the game tree determine 
i’s payoff from playing si , and i can always infer these actions from their own payoffs. The 
distribution over the infinite sequence of profiles (ah(t))

∞
t=1 is given by i’s belief νsi , that is, 

there is some fixed mixed action in ×h∈Fi [si ]�(Ah) that generates profiles (ah(t)) i.i.d. across 
periods t . The event {τ = T } for T ≥ 1 corresponds to using si for T periods, observing the first 
T elements (ah(t))

T
t=1, then stopping.

A learning policy that chooses a strategy si with the highest Gittins index after each history yi

solves the rational agent’s dynamic optimization problem. We denote any such policy as OPTi , 
suppressing its dependence on δ and gi .

5.3. Weighted fictitious play in factorable games

Next we consider the weighted fictitious play heuristic, a generalization of Brown (1951)’s 
fictitious play.19 Agent i keeps track of counts for actions at the opponent information sets in the 
game tree,

{Nah

h ∈R++ : h ∈ H−i , ah ∈ Ah}.
The Nah

h values of a newcomer agent start at some initial counts, Nah

h (∅) > 0, and the counts 
update as i learns. The counting function Nah

h : Yi → R++ takes a history of i as input and 
returns the number of times that action ah ∈ Ah has been played at −i’s information set h in this 
history, where past counts decay at a rate of ρ. We define the counting function formally below.

After history yi of i where si has been used T ≥ 0 times, i’s subhistory for si can be viewed 
as yi,si = (si , s

(t)
−i (h)h∈Fi [si ])Tt=1 where s(t)

−i (h)h∈Fi [si ] is the observed −i’s play on Fi[si] the t-th 

measure. Something weaker suffices: we only need independent beliefs about the randomization probabilities on h, h′
if h ∈ Fi [si ] and h′ ∈ Fi [s′

i
] for si �= s′

i
. We conjecture that whenever beliefs about randomization probabilities are 

correlated by some amount no larger than ξ > 0, resulting behavior violates the player-compatibility order by at most an 
amount B(ξ), where B(ξ) decreases to 0 as ξ → 0.
19 This heuristic was first estimated on lab data by Cheung and Friedman (1997). It was generalized by Camerer and 
Ho (1999) and later analyzed by Benaïm et al. (2009).
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time that si was used. (This is because there is a one-to-one relationship between s−i’s play on 
Fi[si] and ui(si , s−i ).) The updated count on (h, ah) for h ∈ Fi[si] and ah ∈ Ah is

N
ah

h (yi) =
T∑

t=1

1(s
(t)
−i (h) = ah) · ρ(T −t) + ρT N

ah

h (∅)

for some ρ ∈ (0, 1]. Here, 1(·) is the indicator function. The strategy si is implied by the −i

information set h ∈ H−i in this expression: by factorability, there can only be up to one strategy 
si of i for which the information set h is si -relevant.

That is, i calculates a weighted sum for the total number of times that −i have played ah in 
the history yi , where past observations on Fi[si] are discounted at a rate ρ between successive 
uses of the strategy si . All agents share the same weight factor ρ.

Following history yi , i assigns an index to si equal to its expected payoff when opponents play 

the mixed action αh(ah; yi) = N
ah
h (yi )∑

a′
h
∈Ah

N
a′
h

h (yi )

on information sets h ∈ Fi[si]. Write WFPi for a 

learning policy that chooses a strategy with the highest weighted fictitious play index after every 
history (suppressing its dependence on ρ and the initial counts {Nah

h (∅) : h ∈ H−i , ah ∈ Ah}).
When ρ = 1, the counts are updated according to the unweighted fictitious play, and the limit 

of ρ → 0 corresponds to myopically best replying to the observed play when each strategy was 
most recently used. The special case of the Gittins index where the prior gi marginalized to each 
�(Ah) is a Dirichlet distribution and δ = 0 is equivalent to the special case of unweighted ficti-
tious play (i.e., ρ = 1) with some initial counts that depend on the Dirichlet priors’ parameters. 
In general OPTi differs from WFPi outside of these special cases.

5.4. Player-compatibility implies index-compatibility of OPT and WFP under isomorphic 
factoring

The main result of this paper, Theorem 2, shows that if s∗
i � s∗

j in a game isomorphically 
factorable for i and j with ϕ(s∗

i ) = s∗
j , then i uses s∗

i more frequently than j uses s∗
j both 

under rational experimentation and under weighted fictitious play. This comparison holds under 
the hypothesis that i and j start their learning processes with the same “initial conditions.” For 
OPT, this means i, j have the same δ, and that i’s prior gi marginalized to the si -relevant −ij

information sets equals to j ’s prior gj marginalized to the ϕ(si)-relevant −ij information sets 
for every si ∈ Si . For WFP, this means i and j start with the same initial counts about −ij ’s 
actions.

Theorem 2. Suppose i, j ∈ Î are distinct players, s∗
i ∈ Si , s∗

j ∈ Sj , s∗
i � s∗

j , and the game is 
isomorphically factorable for i and j with ϕ(s∗

i ) = s∗
j . For any common survival chance 0 ≤

γ < 1 and any social distribution σ , we have φi(s
∗
i ; ri , σ−i ) ≥ φj (s

∗
j ; rj , σ−j ) under either of 

the following conditions:

• ri = OPTi and rj = OPTj for the same δ and some priors gi, gj that are regular and equiva-
lent20: that is, they satisfy gi |�(Ah):h∈Fi [si ]∩H−ij

= gj |�(Ah):h∈Fj [ϕ(si )]∩H−ij
for every si ∈ Si .

20 The theorem easily generalizes to the case where i starts with one of L ≥ 2 possible priors g(1)
i

, ..., g(L)
i

with prob-

abilities p1, ..., pL and j starts with priors g(1)
j

, ..., g(L)
j

with the same probabilities, and each g(l)
i

, g(l)
j

is a pair of 
equivalent regular priors for 1 ≤ l ≤ L.
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• ri = WFPi , rj = WFPj , and i and j have the same initial counts Nah

h (∅) for every si ∈ Si , 
h ∈ Fi[si] ∩ H−ij , and ah ∈ Ah.

The proof works by showing that if s∗
i � s∗

j and the hypotheses on the initial conditions hold, 
then OPTi is more index-compatible with s∗

i than OPTj is with s∗
j , and similarly WFPi is more 

index-compatible with s∗
i than WFPj is with s∗

j , with respect to the pairing (ϕ, (≡si )) constructed 
using isomorphic factoring. This then lets us apply Proposition 5’s general conclusion about 
index-compatible learning policies.

5.5. Player-compatibility and steady-state behavior

We briefly discuss how steady-state behavior in our learning framework relates to Theorem 2
and to PCE. Suppose there is a unit mass of agents in each player role i ∈ I, who are randomly 
matched to play the game every period. Each agent leaves the society with probability 1 − γ at 
the end of every period, and a γ mass of newcomers is added to each population i. Denote the 
distribution over histories in each population i as ψi ∈ �(Yi). We can compute from the profile 
(ψi)i∈I an updated profile of distributions over histories that will emerge next period, taking into 
account changes in histories from agents playing the game against random opponents and from 
agents’ exits / entries. A steady state is a fixed point of this updating procedure. Each steady state 
is associated with a steady-state strategy profile (σ ∗

i )i∈I , where σ ∗
i ∈ �(Si ) is the distribution 

over strategies we would get if we ask an agent sampled uniformly at random from population i
which strategy they intend to use in their next game.

An implication of Theorem 2 is that if s∗
i � s∗

j , the game is isomorphically factorable for 

i, j ∈ Î with ϕ(s∗
i ) = s∗

j , and i, j are either rational Bayesians or use weighted fictitious play 
with the same “initial conditions” as in Theorem 2, then σ ∗

i (s∗
i ) ≥ σ ∗

j (s∗
j ) in every steady-state 

strategy profile σ ∗. This is because we may take σ ∗ to be the social distribution in the hypothesis 
of the theorem, and note that i’s discounted lifetime play φi(·; ri , σ ∗) against σ ∗ is σ ∗

i by the 
fixed-point property of the steady state, and similarly for j . The same result would also hold 
for any other class of games and learning policies where player compatibility implies index 
compatibility.

This provides a broad motivation for player-compatible trembles based on the steady state of 
a learning framework. But PCE still differs from the learning framework’s steady states. PCE 
is the limit of any sequence of ε-PCE as trembles tend to 0. There is no analogous limit of the 
steady states in the learning framework that naturally applies to all general index policies, and the 
kind of limit we take affects the conclusions. Intuitively, we are interested in limits where player 
lifetimes become long, so that they have many observations of play, and also players become 
patient, so that they have an incentive to experiment with off-path actions. However, there are 
many versions of this iterated limit.

For example, with rational agents in the link-formation game, the iterative limit of steady 
states when the expected lifetime of North players grows more slowly than the expected lifespan 
of South players and the common patience parameter of all players is always a PCE, but we do 
not know whether the limit is a PCE if all players grow long-lived and patient at the same rate.21

Conversely, like most of the refinements literature, we have focused on necessary conditions; we 

21 Clark and Fudenberg (2021) develop an equilibrium refinement for signaling games with cheap talk that corresponds 
to the limits of steady states in signaling games where the senders play more frequently than the receivers.
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have not explored any additional implications our learning model might have for specific policies. 
Ruling out these two potential differences between PCE and limits of steady-state profiles likely 
depends on the details of the learning policies that agents use, unlike the general foundation we 
provide for the cross-player tremble restriction.

6. Concluding discussion

PCE makes two key contributions. First, it generates new and sensible restrictions on equi-
librium play by imposing cross-player restrictions on the relative probabilities that different 
players assign to certain strategies — namely, those strategy pairs si, sj ranked by the player 
compatibility relation si � sj . As we have shown through examples, these cross-player restric-
tions distinguish PCE from other refinement concepts and allow us to make comparative statics 
predictions in some games where other equilibrium refinements do not.

Second, PCE shows how restricted trembles can capture some of the implications of non-
equilibrium learning. PCE’s cross-player restrictions arise endogenously for a general class of 
index learning policies, which under isomorphic factoring includes both the standard model 
of Bayesian agents maximizing their expected discounted lifetime utility, and computationally 
tractable heuristics like weighted fictitious play. We conjecture that the result that i is more likely 
to experiment with si than j is with sj when si � sj applies in other natural models of learning 
or dynamic adjustment, such as those considered by Francetich and Kreps (2020a,b), and that it 
may be possible to provide foundations for PCE in other and perhaps larger classes of games.

The strength of the PCE refinement depends on the completeness of the compatibility order 
�, since ε-PCE imposes restrictions on i and j ’s play only when the relation si � sj holds. Our 
player compatibility definition supposes that player i thinks all mixed strategies of other players 
are possible, as it considers the set of all totally mixed correlated strategies σ−i ∈ �◦(S−i ). If 
the players have some prior knowledge about their opponents’ utility functions, player i might 
deduce a priori that the other players will only play strategies in some subset of �◦(S−i ). As 
we show in Fudenberg and He (2020), in signaling games imposing this kind of prior knowledge 
leads to a more complete version of the compatibility order. It may similarly lead to a more 
refined version of PCE.

PCE is defined for every finite game in its strategic form. We have only provided learning 
foundations for player-compatible trembles in factorable games. Moreover, even in factorable 
games, PCE imposes some extra restrictions that we do not microfound, but we view this as 
a first step in connecting together tremble-based refinement concepts with learning-in-games. 
As we have shown through the link-formation game and other examples, PCE is a convenient 
reduced form that generates novel comparative statics predictions in various applications without 
needing the analyst to solve the dynamic learning problem anew in each of them.

In the Online Appendix, we show that PCE is invariant to adding duplicate copies of strate-
gies, where the duplicates have the same payoff consequences. Mapping back to the learning 
framework, we think of different strategies of i in the extended game as different learning op-
portunities about −i’s play. Copies of different strategies are learning opportunities that provide 
orthogonal information, while copies of the same strategy provide the same information. As an 
example, suppose that in the Restaurant Game the critic can arrive at the restaurant by taking the 
red bus or the blue bus, and the color of the bus is not observed by other players, does not change 
anyone’s payoffs, and does not change what the critic observes. We can then replace Rc with 
two actions Rred

c , Rblue
c at the critic’s information set and expand the game tree, letting Rred

c and 
Rblue both have the same payoff consequences as Rc in the original game. This modified game is 
c
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an extended game with duplicates for the original game. We extend the compatibility relation to 
games with duplicates, and require that the sum of tremble probabilities assigned to all copies of 
s∗
i exceeds the sum assigned to all copies of s∗

j whenever s∗
i � s∗

j in the original game. We show 
that the set of PCE in the original game coincides with the set of PCE in the extended game with 
duplicates, and explain how the learning foundation for player compatibility extends to duplicate 
strategies in binary participation games.

Appendix A

7. Proofs of results stated in the main text

7.1. Proof of Proposition 3

We first state an auxiliary lemma.

Lemma 3. If σ ◦ is an ε-PCE and s∗
i � s∗

j , then

σ ◦
i (s∗

i ) ≥ min

⎡
⎣σ ◦

j (s∗
j ),1 −

∑
s′
i �=s∗

i

ε(s′
i )

⎤
⎦ .

Proof. Suppose ε is player compatible and let ε-constrained equilibrium σ ◦ be given. For s∗
i �

s∗
j , suppose σ ◦

j (s∗
j ) = ε(s∗

j ). Then σ ◦
i (s∗

i ) ≥ ε(s∗
i ) ≥ ε(s∗

j ) = σ ◦
j (s∗

j ), where the second inequality 
comes from ε being player compatible. On the other hand, suppose σ ◦

j (s∗
j ) > ε(s∗

j ). Since σ ◦ is 
an ε-constrained equilibrium, the fact that j puts more than the minimum required weight on 
s∗
j implies s∗

j is at least a weak best response for j against σ ◦, with σ ◦ totally mixed due to the 
trembles. The definition of s∗

i � s∗
j then implies that s∗

i must be a strict best response for i against 
σ ◦ as well. In the ε-constrained equilibrium, i must assign as much weight to s∗

i as possible, so 
that σ ◦

i (s∗
i ) = 1 − ∑

s′
i �=s∗

i
ε(s′

i ). Combining these two cases establishes the desired result. �
We now turn to the proof of Proposition 3.

Proof. By Lemma 3, for every ε(t)-PCE we get

σ
(t)
i (s∗

i )

σ
(t)
j (s∗

j )
≥ min

[
σ

(t)
j (s∗

j )

σ
(t)
j (s∗

j )
,

1 − ∑
s′
i �=s∗

i
ε(t)(s′

i )

σ
(t)
j (s∗

j )

]

= min

[
1,

1 − ∑
s′
i �=s∗

i
ε(t)(s′

i )

σ
(t)
j (s∗

j )

]
≥ 1 −

∑
s′
i �=s∗

i

ε(t)(s′
i ).

This says

inf
t≥T

σ
(t)
i (s∗

i )

σ
(t)
j (s∗

j )
≥ 1 − sup

t≥T

∑
s′
i �=s∗

i

ε(t)(s′
i ).

For any sequence of trembles such that ε(t) → 0, limT →∞ supt≥T

∑
′ ∗ ε(t)(s′) = 0, so
si �=si i
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lim inf
t→∞

σ
(t)
i (s∗

i )

σ
(t)
j (s∗

j )
= lim

T →∞

{
inf
t≥T

σ
(t)
i (s∗

i )

σ
(t)
j (s∗

j )

}
≥ 1.

This shows that if we fix a PCE σ ∗ and consider a sequence of player-compatible trembles 
ε(t) and ε(t)-PCE σ (t) → σ ∗, then each σ (t)

−k satisfies lim inft→∞σ
(t)
i (s∗

i )/σ
(t)
j (s∗

j ) ≥ 1 whenever 

i, j �= k and s∗
i � s∗

j . Furthermore, from σ ∗
k (s̄k) > 0 and σ (t)

k → σ ∗
k , we know there is some 

T1 ∈ N so that σ (t)
k (s̄k) > σ ∗

k (s̄k)/2 for all t ≥ T1. We may also find T2 ∈ N so that ε(t)(s̄k) <

σ ∗
k (s̄k)/2 for all t ≥ T2, since ε(t) → 0. So when t ≥ max(T1, T2), σ

(t)
k places strictly more 

than the required weight on s̄k , so s̄k is at least a weak best response for k against σ (t)
−k . Now the 

subsequence of opponent play (σ (t)
−k)t≥max(T1,T2) satisfies the requirement of this proposition. �

7.2. Proof of Theorem 1

Proof. Consider a sequence of tremble profiles with the same lower bound on the probability of 
each strategy, that is ε(t)(si) = ε(t) for all i and si , and with ε(t) decreasing monotonically to 0 in 
t . Each of these tremble profiles is player compatible (regardless of the compatibility structure �) 
and there is some finite T large enough that t ≥ T implies an ε(t)-constrained equilibrium exists, 
and some subsequence of these ε(t)-constrained equilibria converges since the space of mixed 
strategy profiles is compact. By definition these ε(t)-constrained equilibria are also ε(t)-PCE, 
which establishes existence of PCE. �
7.3. Proof of Proposition 4

Proof. Since every PCE is a trembling-hand perfect equilibrium and since this latter solution 
concept refines Nash, σ ∗ is a Nash equilibrium. To show that it satisfies the compatibility cri-
terion, we need to show that σ ∗

2 assigns probability 0 to plans in AS that, for some s ∈ S, do 
not best respond to an “admissible” belief P(s, σ ∗) at signal s under profile σ ∗ in the sense 
of Fudenberg and He (2018). For any plan assigned positive probability under σ ∗

2 , by Propo-

sition 3 we may find a sequence of totally mixed signal distributions σ (t)
1 of the sender, so 

that whenever sθ � sθ ′ we have lim inft→∞ σ
(t)
1 (s | θ)/σ

(t)
1 (s | θ ′) ≥ 1. Write q(t)(· | s) as the 

Bayesian posterior belief about the sender’s type after signal s under σ (t)
1 , which is well defined 

because each σ (t)
1 is totally mixed. Whenever sθ � sθ ′ , this sequence of posterior beliefs sat-

isfies lim inft→∞ q(t)(θ | s)/q(t)(θ ′ | s) ≥ λ(θ)/λ(θ ′), so if the receiver’s plan best responds to 
every element in the sequence, it also best responds to an accumulation point (q∞(· | s))s∈S with 
q∞(θ | s)/q∞(θ ′ | s) ≥ λ(θ)/λ(θ ′) whenever sθ � sθ ′ . Since the player compatibility definition 
used in this paper is slightly easier to satisfy than the type compatibility definition that the set 
P(s′, σ ∗) is based on, the plan best responds to P(s′, σ ∗) after every signal s′. �
7.4. Proof of Proposition 5

Let N = maxi |Si |. We first show that i’s discounted lifetime play is the same whether i plays 
against pure strategy profiles drawn i.i.d. in different periods from the social distribution σ−i , or 
against a response path drawn from a certain distribution η at the start of i’s life. The next lemma 
constructs this η from σ , which is the same for all agents, and does not depend on their (possibly 
stochastic) learning policies.
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Lemma 4. For each social distribution σ , there is a distribution η over response paths, so that 
for any player i, any possibly random policy ri : Yi → �(Si ), and any strategy si ∈ Si , we have

φi(si; ri, σ ) = (1 − γ )ES∼η

[ ∞∑
t=1

γ t−1 · 1(yt
i (S, ri) = si)

]
,

where 1(·) is the indicator function and the expectation is over the random response path S
whose realization determines yt

i (S, ri), the strategy that i will play in period t under the learning 
policy r .

Proof. In fact, we will prove a stronger statement: we will show there is such a distribution that 
induces the same distribution over period-t histories for every i, every learning policy ri , and 
every t .

Think of each response path S as a two-dimensional array, S = (St,n)t∈N,1≤n≤N . For non-
negative integers (mn)

N
n=1, each finite two-dimensional array of strategy profiles ((st,n)

mn

t=1)
N
n=1

with each st,n ∈ S defines a “cylinder set” of response paths with the form:

{S :St,n = st,n for each 1 ≤ n ≤ N,1 ≤ t ≤ mn}.
That is, the cylinder set consists of those response paths whose first mn elements for the n-
th strategy match a given sequence of strategy profiles, (st,n)

mn

t=1. (If mn = 0, then there is no 
restriction on St,n for any t .) We specify the distribution η by specifying the probability it assigns 
to these cylinder sets:

η
{
((st,n)

mn

t=1)
N
n=1

}
=

N∏
n=1

mn∏
t=1

σ(st,n),

where we have abused notation to write ((st,n)
mn

t=1)
N
n=1 for the cylinder set satisfying this profile 

of sequences, and we have used the convention that the empty product is defined to be 1.
We establish the claim by induction on t for period-t histories. For t ≥ 0, let Yi[t] ⊆ Yi be the 

set of possible period-t histories of i, that is Yi[t] := (Si × Oi )
t . In the base case of t = 1, we 

show playing against a response path drawn according to η and playing against a pure strategy22

drawn from σ−i ∈ ×k �=i�(Sk) generate the same period-1 history. Fixing a learning policy ri :
Yi → Si of i, the probability of i having the period-1 history (s(1)

i , o(1)) ∈ Yi[1] in the random-

matching model is 1(ri(∅) = s
(1)
i ) · σ(s : oi (z(s

(1)
i , s−i )) = o(1)). That is, i’s policy must play 

s
(1)
i in the first period of i’s life. Then, i must encounter such a pure strategy that generates the 

required observation o(1), and this has probability σ(s : oi (z(s
(1)
i , s−i )) = o(1)). The probability 

of this happening against a response path drawn from η is

1(ri(∅) = s
(1)
i ) · η(S:oi (z(s

(1)
i , s

1,s
(1)
i ,−i

)) = o(1))

=1(ri(∅) = s
(1)
i ) · σ(s : oi (z(s

(1)
i , s−i )) = o(1)),

where the second line comes from the probability η assigns to cylinder sets.

22 In the random matching model agents are facing a randomly drawn pure strategy profile each period (and not a fixed 
behavior strategy): they are matched with random opponents, who each play a pure strategy in the game as a function of 
their personal history. From Kuhn’s theorem, this is equivalent to facing a fixed profile of behavior strategies.
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We now proceed with the inductive step. By induction, suppose random matching and the η-
distributed response path induce the same distribution over the set of period-T histories, Yi[T ], 
where T ≥ 1. Write this common distribution as φRM

i,T = φ
η
i,T = φi,T ∈ �(Yi[T ]). We prove that 

they also generate the same distribution over length T + 1 histories.
Suppose random matching generates distribution φRM

i,T +1 ∈ �(Yi[T +1]) and the η-distributed 
response path generates distribution φη

i,T +1 ∈ �(Yi[T + 1]). Each length T + 1 history yi[T +
1] ∈ Yi[T + 1] may be written as (yi[T ], (s(T +1)

i , o(T +1))), where yi[T ] is a length-T history 

and (s(T +1)
i , o(T +1)) is a one-period history corresponding to what happens in period T + 1. 

Therefore, we may write for each yi[T + 1],
φRM

i,T +1(yi[T + 1]) = φRM
i,T (yi[T ]) · φRM

i,T +1|T ((s
(T +1)
i , o(T +1))|yi[T ]),

and

φ
η
i,T +1(yi[T + 1]) = φ

η
i,T (yi[T ]) · φη

i,T +1|T (((s
(T +1)
i , o(T +1))|yi[T ]),

where φRM
i,T +1|T and φ

η
i,T +1|T are the conditional probabilities of the form “having history 

(s
(T +1)
i , o(T +1)) in period T + 1, conditional on having history yi[T ] ∈ Yi[T ] in the first T peri-

ods.” If such conditional probabilities are always the same for the random-matching model and 
the η-distributed response path model, then from the hypothesis φRM

i,T = φ
η
i,T , we can conclude 

φRM
i,T +1 = φ

η
i,T +1.

By argument exactly analogous to the base case, we have for the random-matching model

φRM
i,T +1|T ((s

(T +1)
i , o(T +1))|yi[T ])

=1(ri(yi(T )) = s
(T +1)
i ) · σ(s : oi (z(s

(T +1)
i , s−i )) = o(T +1)),

since the matching is independent across periods. In the η-distributed response path model, since 
a single response path is drawn once and fixed, one must compute the conditional probability that 
the drawn S is such that the observation o(T +1) will be seen in period T + 1, given the history 
yi[T ] (which is informative about which response path i is facing).

For each 1 ≤ n ≤ N , let the non-negative integer mn represent the number of times i has used 
the n-th strategy in Si in the history yi[T ]. Let (ot,n)1≤t≤mn represent the sequence of obser-
vations seen after using the n-th strategy, in chronological order. Consider the following finite 
union of cylinder sets, (st,n : oi (z(n, st,n,−i )) = ot,n)1≤t≤mn,1≤n≤N . This is the set of response 
sequences consistent with the observations so far.

If S is to produce the observation o(T +1) from i’s next play of s(T +1)
i , then S must be-

long to a more restrictive cylinder set that satisfies the additional restriction (s
m

s
(T+1)
i

+1,s
(T +1)
i

:
oi (z(s

(T +1)
i , s−i )) = o

m
s
(T +1)
i

+1,s
(T +1)
i

). The conditional probability of S belonging to this more 

restrictive cylinder set, given that it falls in (st,n : oi (z(n, st,n,−i )) = ot,n)1≤t≤mn,1≤n≤N , is given 
by the ratio of η-probabilities of these unions of cylinder sets, which from the product structure 
of η on cylinder sets, must be σ(s : oi (z(s

(T +1)
i , s−i )) = o(T +1)). �

Thus, to prove that φi(s
∗
i ; ri, σ−i ) ≥ φj (s

∗
j ; rj , σ−j ), it suffices to show that for every S, the 

period where s∗
i is played for the k-th time in induced history yi(S, ri) happens earlier than the 

period where s∗ is played for the k-th time in history yj(S, rj ).
j
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Now we turn to the proof of Proposition 5.

Proof. Let 0 ≤ γ < 1 and the social distribution σ be fixed. Enumerate the strategy sets of i
and j so that si and ϕ(si) are assigned the same number for every si ∈ Si . Consider the product 
distribution η on the space of response paths, ((S)N)∞, as in the proof of Lemma 4.

By Lemma 4, denote the period where s∗
i appears in yi(S, ri) for the k-th time as T (k)

i , the 

period where s∗
j appears in yj (S, rj ) for the k-th time as T (k)

j . The quantities T (k)
i , T (k)

j are 
defined to be ∞ if the corresponding strategies do not appear at least k times in the infinite 
histories. Write #(s′

i; k) ∈ N ∪ {∞} be the number of times s′
i ∈ Si is played in the history 

yi(S, ri) before T (k)
i . Similarly, #(s′

j ; k) ∈ N ∪ {∞} denotes the number of times s′
j ∈ Sj is 

played in the history yj (S, rj ) before T (k)
j . Since ϕ establishes a bijection between Si and Sj , it 

suffices to show that for every k = 1, 2, 3, ... either T (k)
j = ∞ or for all s′

i �= s∗
i , #(s′

i; k) ≤ #(s′
j ; k)

where s′
j = ϕ(s′

i ).
We show this by induction on k. First we establish the base case of k = 1.
Suppose T (1)

j �= ∞, and, by way of contradiction, suppose there is some s′
i �= s∗

i such that 
#(s′

i; 1) > #(ϕ(s′
i ); 1). Find the subhistory yi of yi(S, ri) that leads to s′

i being played for the 
(#(ϕ(s′

i ); 1) + 1)-th time, and find the subhistory yj of yj (S, rj ) that leads to j playing s∗
j for 

the first time (yj is well-defined because T (1)
j �= ∞). Note that yi,s∗

i
≡ yj,s∗

j
vacuously, since i

has never played s∗
i in yi and j has never played s∗

j in yj .
Also, yi,s′

i
≡ yj,s′

j
. To see this, note that i has played s′

i for #(ϕ(s′
i ); 1) times and j has played 

s′
j for the same number of times. The definition of response paths implies they faced the same se-

quence of opponent strategy profiles, and the definition of isomorphic learning problems implies 
they have gotten equivalent observations in all these periods.

Since rj (yj ) = s∗
j and rj is an index policy, s∗

j must have weakly the highest index at yj . 
Since ri is more compatible with s∗

i than rj is with s∗
j , s′

i must not have the weakly highest index 
at yi . And yet ri(yi) = s′

i contradiction.
Now suppose this statement holds for all k ≤ K for some K ≥ 1. We show it also holds for 

k = K + 1. If T (K+1)
j = ∞ or T (K)

j = ∞, we are done. Otherwise, by way of contradiction, 
suppose there is some s′

i �= s∗
i so that #(s′

i; K + 1) > #(ϕ(s′
i ); K + 1). Find the subhistory yi of 

yi(S, ri) that leads to s′
i being played for the (#(ϕ(s′

i); K + 1) + 1)-th time. Since T (K)
j �= ∞, 

from the inductive hypothesis T (K)
i �= ∞ and #(s′

i; K) ≤ #(ϕ(s′
i ); K). That is, i must have played 

s′
i no more than #(ϕ(s′

i ); K) times before playing s∗
i for the K-th time. Since #(ϕ(s′

i ); K + 1) +
1 > #(ϕ(s′

i ); K), the subhistory yi must extend beyond period T (K)
i , so it contains K instances 

of i playing s∗
i .

Next, find the subhistory yj of yj (S, rj ) that leads to j playing s∗
j for the (K + 1)-th time. 

(This is well-defined because T (K+1)
j �= ∞.) Note that yi,s∗

i
≡ yj,s∗

j
, since i and j have played 

s∗
i , s∗

j for K times each, and they were facing the same response paths. Also, yi,s′
i
≡ yj,s′

j
since i

has played s′
i for #(ϕ(s′

i ); K + 1) times and j has played s′
j for the same number of times. Since 

rj (yj ) = s∗
j and rj is an index policy, s∗

j must have weakly the highest index at yj . Since ri is 
more compatible with s∗

i than rj is with s∗
j , s′

i must not have the weakly highest index at yi . And 
yet ri(yi) = s′ contradiction. �
i
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7.5. Proof of Lemma 1

Proof. By way of contradiction, suppose there is some profile of moves by −i, (ah)h∈H−i
, so 

that h∗ is off the path of play in (si, (ah)h∈H−i
) = (si , ah∗ , (ah)h∈H−i\h∗). Find a different ac-

tion of j on h∗, a′
h∗ �= ah∗ . Since h∗ is off the path of play, both (si, ah∗ , (ah)h∈H−i\h∗) and 

(si , a′
h∗ , (ah)h∈H−i\h∗) lead to the same payoff for i. But by Condition (1) in the definition of 

factorability and the fact that h∗ ∈ Fi[si], we have found two −i action profiles s−i , s′−i in two 
different blocks of �i[si] with ui(si , s−i ) = ui(si , s′−i ). This contradicts �i[si] being the coars-
est partition of S−i that makes ui(si , ·) measurable. �
7.6. Proof of Lemma 2

Proof. Since i’s payoff is not independent of h∗, there exist actions ah∗ �= a′
h∗ on h∗ and a profile 

a−h∗ of actions elsewhere in the game tree, so that ui(ah∗ , a−h∗) �= ui(a
′
h∗ , a−h∗). Consider the 

strategy si for i that matches a−h∗ in terms of i’s action, so we may equivalently write

ui(si , ah∗ , (ah)h∈H−i\h∗) �= ui(si , a
′
h∗ , (ah)h∈H−i\h∗),

where (ah)h∈H−i\h∗ are the components of a−h∗ corresponding to information sets of −i. If 
h∗ /∈ Fi[si], then by Condition (1) of factorability, (ah∗, (ah)h∈H−i\h∗) and (a′

h∗ , (ah)h∈H−i\h∗)
belong to the same block in �i[si]. Yet, they give different payoffs to i, which contradicts that 
i’s payoff after si must be measurable with respect to �i[si]. �
7.7. Proof of Proposition 6

Proof. Combining Lemmas 1 and 2 implies there is an action si ∈ Si such that h∗ is on the path 
of play whenever i plays si at their information set. �
8. Index compatibility of OPT and WFP when s∗

i � s∗
j

In this section, we show that OPT and WFP are index compatible under the conditions of 
Theorem 2. This conclusion, when combined with Proposition 5, implies Theorem 2.

With ϕ given from isomorphic factorability, define a pairing (ϕ, (≡si )) so that for each si ∈
Si , (si , ui(si , ̃s−i )) ≡si (ϕ(si), uj (ϕ(si), ̂s−j ) if and only if s̃−i |Fi [si ]∩H−ij

= ŝ−j |Fj [ϕ(si )]∩H−ij
. 

Conditions on factorability and isomorphic factoring ensure that (ϕ, (≡si )) is a pairing. Indeed, 
if i and j faced the same pure profile s̃, then s̃−i |Fi [si ]∩H−ij

= s̃−j |Fj [ϕ(si )]∩H−ij
since Fi[si] ∩

H−ij = Fj [ϕ(si)] ∩ H−ij by isomorphic factoring.

8.1. Weighted fictitious play

To see that WFP satisfies index compatibility for s∗
i and s∗

j under the conditions of Theo-
rem 2, let histories yi, yj and strategy s′

i �= s∗
i be given with yi,s∗

i
≡ yj,s∗

j
, yi,s′

i
≡ yj,ϕ(s′

i )
, and 

s∗
j having weakly the highest index for j . Construct two totally mixed, independent behavior 

strategy profile, β, β̃ as follows. For each sj ∈ Sj , β(h) := αh(·; yj ) for all h ∈ Fj [sj ]. (This 
is well-defined by Condition (2) of factorability, as Fj [sj ] ∩ Fj [s′

j ] = ∅ if sj �= s′
j .) For those 

h ∈ H\ ∪s ∈S Fj [sj ], arbitrarily specify a strictly mixed action αh ∈ �(Ah) for β(h). Having 

j j
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constructed β we turn to β̃ . For each si ∈ {s∗
i , s′

i}, β̃(h) := αh(·; yi) for all h ∈ Fi[si]. For all 
other h ∈ H, let β̃(h) := β(h).

From the definition of yi,s∗
i
≡ yj,s∗

j
, β̃(h) = β(h) for all h ∈ Fi[s∗

i ] ∩H−ij . From the definition 

of yi,s′
i
≡ yj,ϕ(s′

i )
, β̃(h) = β(h) for all h ∈ Fi[s′

i] ∩H−ij . Also, β̃(h) = β(h) for all other h ∈ H−ij

by construction. So, β̃ and β are totally mixed behavior strategy profiles that match on the −ij

marginal, and they can be represented by σ̃ , σ totally mixed strategy distributions (over S) that 
match on the −ij marginal.

Since j ’s payoff from each sj only depends on −j ’s play on Fj [sj ] by Condition (1) of 
factorability, Uj(sj , σ) equals to the index that the weighted fictitious play agent assigns to sj
after history yj . Since s∗

j has the weakly highest index, Uj(s
∗
j , σ) = maxs′

j ∈Sj
Uj (s

′
j , σ). From 

the definition of player compatibility, s∗
i is strictly optimal against σ̃ , which in particular means 

Ui(s
∗
i , σ̃ ) > Ui(s

′
i , σ̃ ). The RHS is i’s index for s′

i after yi , since σ̃ marginalized to every h ∈
Fi[s′

i] is αh(·; yi) by construction. This says s′
i does not have the weakly highest index for i after 

yi .
Thus, WFP satisfies index compatibility for s∗

i and s∗
j .

8.2. The Gittins index

Write V (τ ; si , νsi ) for the value of the auxiliary problem in Equation (1) under the (not 
necessarily optimal) stopping time τ in the definition of the Gittins index. The Gittins index 
of si is supτ>0 V (τ ; si , νsi ). We begin by linking V (τ ; si, νsi ) to i’s payoff from playing si . 
From belief νsi and stopping time τ , we will construct the correlated distribution α(νsi , τ) ∈
�◦(×h∈Fi [si ]Ah), so that V (τ ; si, νsi ) is equal to i’s expected payoff when playing si while op-
ponents play according to this correlated distribution on the si-relevant information sets.

Definition 15. A full-support belief νsi ∈ ×h∈Fi [si ]�(�(Ah)) for player i together with a (possi-
bly random) stopping rule τ > 0 together induce a stochastic process (ã(−i),t )t≥1 over the space 
×h∈Fi [si ]Ah ∪ {∅}, where ã(−i),t ∈ ×h∈Fi [si ]Ah represents the opponents’ actions observed in 
period t if τ ≥ t , and ã(−i),t = ∅ if τ < t . We call ã(−i),t player i’s internal history at period t
and write P(−i) for the distribution over internal histories that the stochastic process induces.

Internal histories live in the same space as player i’s actual experience in the learning problem, 
represented as a history in Oi . The process over internal histories is i’s prediction about what 
would happen in the auxiliary problem if they were to use τ .

Enumerate all possible profiles of moves at information sets Fi[si] as ×h∈Fi [si ]Ah =
{a(1)

(−i), ..., a
(K)
(−i)}, let pt,k := P(−i)[ã(−i),t = a

(k)
(−i)] for 1 ≤ k ≤ K be the probability under νsi

of seeing the profile of actions a(k)
(−i)

in period t of the stochastic process over internal histo-
ries, (ã(−i),t )t≥0, and let pt,0 := P(−i)[ã(−i),t = ∅] be the probability of having stopped before 
period t .

Definition 16. The synthetic correlated distribution at information sets in Fi[si] is the element 

of �◦(×h∈Fi [si ]Ah) (i.e. a correlated random action) that assigns probability 
∑∞

t=1 βt−1pt,k∑∞
t=1 βt−1(1−pt,0)

to 

the profile of actions a(k) . Denote this profile by α(νs , τ).
(−i) i

34



D. Fudenberg and K. He Journal of Economic Theory 194 (2021) 105238
Note that the synthetic correlated distribution depends on the belief νsi stopping rule τ , and 
effective discount factor β . Since the belief νsi has full support, there is always a positive prob-
ability assigned to observing every possible profile of actions on Fi[si] in the first period, so 
the synthetic correlated distribution is totally mixed. The significance of the synthetic correlated 
distribution is that it gives an alternative expression for the value of the auxiliary problem under 
stopping rule τ .

Lemma 5.

V (τ ; si , νsi ) = ui(si , α(νsi , τ ))

The proof is the same as in Fudenberg and He (2018) and is omitted.23

Consider now the situation where i and j share the same beliefs about play of −ij on the 
common information sets Fi[si] ∩ Fj [sj ] ⊆ H−ij . For any pure-strategy stopping time τj of j , 
we define a random stopping rule of i, the mimicking stopping time for τj . Lemma 6 will establish 
that the mimicking stopping time generates a synthetic correlated distribution that matches the 
corresponding profile of τj on Fi[si] ∩ Fj [sj ].

Note that τj maps j ’s internal histories to stopping decisions, which do not live in the same 
space as i’s internal histories. In particular, τj could make use of i’s play to decide whether 
to stop. To mimic such a rule, i makes use of external histories, which include both the com-
mon component of i’s internal history on Fi[si] ∩ Fj [sj ], as well as simulated histories on 
Fj [sj ]\(Fi[si] ∩ Fj [sj ]).

For a given bijection ϕ between Si and Sj with ϕ(si) = sj and Fi, Fj , we may write Fi[si] =
FC ∪ F̄−i with FC ⊆ H−ij and F̄−i ⊆ H−i . Similarly, we may write Fj [sj ] = FC ∪ F̄−j with 
F̄−j ⊆ H−j . (So, FC is the common information sets that are observed after both si and sj .) 
Whenever j plays sj , they observe some (a(C), a(−j)) ∈ (×h∈FC Ah) × (×h∈F̄−j Ah), where a(C)

is a profile of actions at information sets in FC and a(−j) is a profile of actions at information 
sets in F̄−j . So a pure-strategy stopping rule in the auxiliary problem defining j ’s Gittins index 
for sj is a function τj : ∪t≥1[(×h∈FC Ah) × (×h∈F̄−j Ah)]t → {0, 1} that maps finite histories in 
Oj to stopping decisions, where “0” means continue and “1” means stop.

Definition 17. Player i’s mimicking stopping rule for τj draws α−j ∈ ×h∈F̄−j �(Ah) from j ’s 
belief νsj on F̄−j , and then draws (a(−j),�)�≥1 by independently generating a(−j),� from α−j

each period. Conditional on (a(−j),�), i stops according to the rule

(τi |(a(−j),�))((a(C),�,a(−i),�)
t
�=1) := τj ((a(C),�,a(−j),�)

t
�=1).

That is, the mimicking stopping rule24 involves ex-ante randomization across a family of 
pure-strategy stopping rules τi |(a(−j),�)

∞
�=1, indexed by (a(−j),�)

∞
�=1. First, i draws a behavior 

strategy on the information sets F̄−j according to j ’s belief about −j ’s play there. Then, i
simulates an infinite sequence (a(−j),�)

∞
�=1 of i’s play using this drawn behavior strategy and 

follows the pure-strategy stopping rule τi|(a(−j),�)
∞
�=1.

23 Notice that even though i starts with the belief that opponents randomize independently at different information 
sets, and also holds an independent prior belief, V (τ ; si , νsi ) may not be the payoff of playing si against independent
randomizations by the opponent because of the endogenous correlation that we discussed in the text.
24 Note this is a valid (stochastic) stopping time, as the event {τi ≤ T } only depends on i’s observations in Oi in the 
first T periods, plus some private randomizations of i.
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As in the definition of internal histories, the mimicking strategy and i’s belief νsi generates 
a stochastic process (ã(−i),t , ã(C),t )t≥1 of internal histories for i (representing actions on Fi[si]
that i anticipates seeing when they play si ). It also induces a stochastic process (ẽ(−j),t , ̃e(C),t )t≥1
of “external histories” defined in the following way:

Definition 18. The stochastic process of external histories (ẽ(−j),t , ̃e(C),t )t≥1 is defined from the 
process of internal histories (ã(−i),t , ã(C),t )t≥1 that τi generates and given by: (i) if τi < t , then 
(ẽ(−j),t , ̃e(C),t ) = ∅; (ii) otherwise, ẽ(C),t = ã(C),t , and ẽ(−j),t is the t-th element of the infinite 
sequence (a(−j),�)

∞
�=1 that i simulated before the first period of the auxiliary problem.

Write Pe for the distribution over the sequence of external histories generated by i’s mimick-
ing stopping time for τj , which is a function of τj , νsj , and νsi .

25

When using the mimicking stopping time for τj in the auxiliary problem, i expects to see the 
same distribution of −ij ’s play before stopping as j does when using τj , on the information sets 
in Fi[si] ∩ Fj [sj ]. This is formalized in the next lemma.

Lemma 6. Suppose the game is isomorphically factorable for i and j with ϕ(si) = sj , and sup-
pose i holds belief νsi over play in Fi[si] and j holds belief νsj over play in Fj [sj ], such that 
νsi |Fi [si ]∩Fj [sj ] = νsj |Fi [si ]∩Fj [sj ], that is the two sets of beliefs match when marginalized to the 
common information sets in H−ij . Let τi be i’s mimicking stopping time for τj . Then, the syn-
thetic correlated distribution α(νsj , τj ) marginalized to the information sets of −ij is the same 
as α(νsi , τi) marginalized to the same information sets.

Proposition 7. Suppose the game is isomorphically factorable for i and j with ϕ(si) = sj , 
ϕ(s′

i ) = s′
j , where s∗

i �= s′
i . Suppose i is more player compatible with s∗

i than j is with s∗
j . Sup-

pose i holds belief νsi ∈ ×h∈Fi [si ]�(�(Ah)) about opponents’ play after each si and j holds 
belief νsj ∈ ×h∈Fj [sj ]�(�(Ah)) about opponents’ play after each sj , such that νs∗

i
|Fi [s∗

i ]∩Fj [s∗
j ] =

νs∗
j
|Fi [s∗

i ]∩Fj [s∗
j ] and νs′

i
|Fi [s′

i ]∩Fj [s′
j ] = νs′

j
|Fi [s′

i ]∩Fj [s′
j ]. If s∗

j has the weakly highest Gittins index 

for j under effective discount factor 0 ≤ δγ < 1, then s′
i does not have the weakly highest Gittins 

index for i under the same effective discount factor.

Proof. We begin by defining a collection of totally mixed correlated distributions (α[sj ])sj ∈Sj

where α[sj ] ∈ �◦(×h∈Fj [sj ]Ah). For each sj �= s′
j the distribution α[sj ] is the synthetic correlated 

distribution α(νsj , τ
∗
sj

), where τ ∗
sj

is an optimal pure-strategy stopping time in j ’s auxiliary stop-
ping problem involving sj . For sj = s′

j , the correlated distribution α[s′
j ] is instead the synthetic 

correlated distribution associated with the mimicking stopping rule for τ ∗
s′
i

, i.e. mimicking agent 

i’s pure-strategy optimal stopping time in i’s auxiliary problem for s′
i .

Next, define a profile of totally mixed correlated actions (α[si])si∈Si
for i’s opponents on 

information sets (Fi[si])si∈Si
. For each si /∈ {s∗

i , s′
i}, just use the marginal distribution of α[ϕ(si)]

25 To understand the distinction between internal and external histories, note that the probability of i’s first-period in-
ternal history satisfying (ã(−i),1, ̃a(C),1) = (ā(−i), ̄a(C)) for some fixed values (ā(−i), ̄a(C)) ∈ ×h∈Fi [si ]Ah is given 
by the probability that a mixed play α−i on Fi [si ], drawn according to i’s belief νsi , would generate the profile of ac-
tions (ā(−i), ̄a(C)). On the other hand, the probability of i’s first-period external history satisfying (ẽ(−j),1, ̃e(C),1) =
(ā(−j), ̄a(C)) for some fixed values (ā(−j), ̄a(C)) ∈ ×h∈Fj [sj ]Ah also depends on j ’s belief νsj , for this belief deter-

mines the distribution over (a(−j),�)
∞ drawn before the start of the auxiliary problem.

�=1
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constructed before on Fi[si] ∩Fj [ϕ(si)], then arbitrarily specify play in Fi[si]\Fj [ϕ(si)], if any. 
For s′

i the correlated distribution is α(νs′
i
, τ ∗

s′
i

), i.e. the synthetic move associated with i’s optimal 

stopping rule for s′
i . Finally, for s∗

i , the correlated distribution α[s∗
i ] is the synthetic correlated 

distribution associated with the mimicking stopping rule for τ ∗
s∗
j

.

From Lemma 6, for every si , the distribution of correlated actions α[si ] and α[ϕ(si )] agree when 
marginalized to the information sets Fi[si] ∩ Fj [ϕ(si)]. Therefore, (α[si ])si∈Si

and (α[sj ])sj ∈Sj

can be completed into two totally mixed correlated strategy distributions, σ̃ and σ (over S), such 
that σ̃ |Fi [si ]∩Fj [ϕ(si )] = σ |Fi [si ]∩Fj [ϕ(si )] for every si . For each sj �= s′

j , the Gittins index of sj
for j is Uj (sj , σsj ). Also, since α[s′

j ] is the mixed distribution associated with the suboptimal 

mimicking stopping time, Uj(s
′
j , σs′

j
) is no larger than the Gittins index of s′

j for j . By the 
hypothesis that s∗

j has the weakly highest Gittins index for j , Uj(s
∗
j , σs∗

j
) ≥ maxsj �=s∗

j
Uj (sj , σsj ). 

By the definition of player compatibility, we must also have Ui(s
∗
i , σs∗

i
) > maxsi �=s∗

i
Ui(si , σsi ), 

so in particular Ui(s
∗
i , σs∗

j
) > Ui(s

′
i , σs′

i
). But Ui(s

∗
i , σs∗

i
) is no larger than the Gittins index of 

s∗
i , for α[s∗

i ] is the synthetic strategy associated with a suboptimal mimicking stopping time. As 
Ui(s

′
i , σs′

i
) is equal to the Gittins index of s′

i this shows s′
i cannot have even weakly the highest 

Gittins index at this belief, for s∗
i already has a strictly higher Gittins index than s′

i does. �
To see that OPT is index compatible for s∗

i , s∗
j under the conditions of Theorem 2, let histories 

yi, yj and strategy s′
i �= s∗

i be given with yi,s∗
i

≡ yj,s∗
j
, ≡ yj,ϕ(s′

i )
. Since gi, gj are equivalent 

priors, i, j ’s posterior beliefs match on every F ∈ Fi[si] ∩ Fj [ϕ(si)], for si ∈ {s∗
i , s′

i}. After 
such histories, if s∗

j has weakly the highest Gittins index for j , we use the hypothesis of player 
compatibility and Proposition 7 to see that s′

i does not have the weakly highest Gittins index 
for i.

8.3. Proof of Lemma 6

Proof. Let (ã(−i),t , ã(C),t )t≥1 and (ẽ(−j),t , ̃e(C),t )t≥1 be the stochastic processes of internal and 
external histories for τi , with distributions P−i and Pe. Enumerate possible profiles of actions 
on FC as ×h∈FC Ah = {a(1)

(C)
, ..., a(KC)

(C)
}, possible profiles of actions on F̄−i as ×h∈F̄−i Ah =

{a(1)
(−i), ..., a

(K−i )

(−i) }, and possible profiles of actions on F̄−j as ×h∈F̄−j Ah = {a(1)
(−j), ..., a

(K−j )

(−j) }.
Write pt,(k−i ,kC) := P−i[(ã(−i),t , ã(C),t ) = (a

(k−i )

(−i) , a(kC)
(C) )] for k−i ∈ {1, ..., K−i} and kC ∈

{1, ..., KC}. Also write qt,(k−j ,kC) := Pe[(ẽ(−j),t , ̃e(C),t ) = (a
(k−j )

(−j) , a(kC)
(C) )] for k−j ∈ {1, ..., K−j }

and kC ∈ {1, ..., KC}. Let pt,(0,0) = qt,(0,0) := P−i[τi < t] = Pe[τi < t] be the probability of 
having stopped before period t .

The distribution of external histories that i expects to observe before stopping under belief νsi

when using the mimicking stopping rule τi is the same as the distribution of internal histories 
that j expects to observe when using stopping rule τj under belief νsj , because i simulates the 
data-generating process on F̄−j by drawing a mixed action α−j according to j ’s belief νsj |F̄−j

and νsi |FC = νsj |FC . Thus for every k−j ∈ {1, ..., K−j } and every kC ∈ {1, ..., KC},∑∞
t=1(δγ )t−1qt,(k−j ,kC)∑∞

t=1(δγ )t−1(1 − qt,(0,0))
= α(νsj , τj )(a

(k−j )

(−j) ,a
(kC)
(C) ).

For a fixed k̄C ∈ {1, ..., KC}, summing across k−j gives
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∑∞
t=1(δγ )t−1 ∑K−j

k−j =1 qt,(k−j ,k̄C)∑∞
t=1(δγ )t−1(1 − qt,(0,0))

= α(νsj , τj )(a
(k̄C)
(C) ).

By definition, the processes (ã(−i),t , ã(C),t )t≥0 and (ẽ(−j),t , ̃e(C),t )t≥0 have the same marginal 
distribution on the second dimension:

K−j∑
k−j =1

qt,(k−j ,k̄C) = P−i[ã(C),t = a
(k̄C)
(C) ] =

K−i∑
k−i=1

pt,(k−i ,k̄C).

Making this substitution and using the fact that pt,(0,0) = qt,(0,0),∑∞
t=1(δγ )t−1 ∑K−i

k−i=1 pt,(k−i ,k̄C)∑∞
t=1(δγ )t−1(1 − pt,(0,0))

= α(νsj , τj )(a
(k̄C)
(C) ).

But by the definition of synthetic correlated distributions, the LHS is

K−i∑
k−i=1

α(νsi , τi)(a
(k−i )

(−i) ,a
(k̄C)
(C) ) = α(νsi , τi)(a

(k̄C)
(C) ).

Since the choice of a(k̄C)
(C) ∈ ×h∈FC Ah was arbitrary, we have shown that the synthetic dis-

tribution α(νsj , τj ) of the original stopping rule τj and the one associated with the mimicking 
strategy of i, α(νsi , τi), coincide on FC . �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2021 .105238.
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