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OA1 Proofs Omitted from the Appendix

OA1.1 Proof of Proposition 1

Proof. Suppose s∗k is weakly optimal for k against some totally mixed correlated distribution
σ(k). We show that s∗i is strictly optimal for i against any totally mixed and correlated σ(i)

with the property that marg−ik(σ(k)) = marg−ik(σ(i)).
To do this, we first modify σ(i) into a new totally mixed distribution by copying how the

action of i correlates with the actions of −(ik) in σ(k). For each s−ik ∈ S−ik and si ∈ Si,
σ(k)(si, s−ik) > 0 since marg−k(σ(k)) ∈ ∆◦(S−k). So write p(si | s−ik) := σ(k)(si,s−ik)∑

s′
i
∈Si

σ(k)(s′i,s−ik) > 0

as the conditional probability that i plays si given −ik play s−ik, in the distribution σ(k).
Now construct the strategy distribution ˆ̂σ ∈ ∆◦(S), where

ˆ̂σ(si, s−ik, sk) := p(si | s−ik) · σ(i)(s−ik, sk).

Distribution ˆ̂σ has the property that marg−jk(ˆ̂σ) = marg−jk(σ(k)). To see this, note first that
because ˆ̂σ and σ(k) agree on the −(ijk) marginal marg−ik(σ(k)) = marg−ik(σ(i)). Also, by
construction, the conditional distribution of i’s action given distribution of (−ijk)’s actions
is the same.

From the hypothesis that s∗j % s∗k, we get j finds s∗j strictly optimal against ˆ̂σ.
But at the same time, marg−i(ˆ̂σ) = marg−i(σ(i)) by construction, so this implies also

marg−ij(ˆ̂σ) = marg−ij(σ(i)). From s∗i % s∗j , and the conclusion that j finds s∗j strictly
optimal against ˆ̂σ just obtained, we get i finds s∗i strictly optimal against σ(i) as desired.

OA1.2 Proof of Proposition 2

Proof. Suppose that s∗i % s∗j and that neither (ii) nor (iii) holds. We show that these
assumptions imply s∗j 6% s∗i .

Partition the set ∆◦(S) into three subsets, Σ+∪Σ0∪Σ−, with Σ+ consisting of σ ∈ ∆◦(S)
that make s∗j strictly better than the best alternative pure strategy, Σ0 the elements of
∆◦(S) that make s∗j indifferent to the best alternative, and Σ− the elements that make
s∗j strictly worse. (These sets are well defined because |Sj| ≥ 2, so j has at least one
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alternative pure strategy to s∗j .) If Σ0 is non-empty, then there is some σ ∈ Σ0 such that∑
s∈S uj(s∗j , s−j)σ(s) = maxs′j∈Sj

∑
s∈S uj(s′j, s−j)σ(s). Because s∗i % s∗j ,

∑
s∈S ui(s∗i , s−i)σ̂(s) >

maxs′i∈Si\{s∗i }
∑
s∈S ui(s′i, s−i)σ̂(s) for every σ̂ ∈ ∆◦(S) such that marg−ij(σ) = marg−ij(σ̂).

Since at least one such σ̂ exists, we do not have s∗j % s∗i .
Also, if both Σ+ and Σ− are non-empty, then Σ0 is non-empty. This is because both σ 7→∑

s∈S uj(s∗j , s−j)σ(s) and σ 7→ maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ(s) are continuous functions. If∑

s∈S uj(s∗j , s−j)σ(s)−maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ(s) > 0 and also ∑s∈S uj(s∗j , s−j)σ̃(s)−

maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ̃(s) < 0, then some mixture between σ and σ̃ must belong to

Σ0.
So we have shown that if either Σ0 is non-empty or both Σ+ and Σ− are non-empty, then

s∗j 6% s∗i .
If only Σ+ is non-empty, then s∗j is strictly interior dominant for j. Together with s∗i % s∗j ,

this would imply that s∗i is strictly interior dominant for i, contradicting the assumption that
(iii) does not hold.

Finally suppose that only Σ− is non-empty, so that for every σ ∈ ∆◦(S) there exists a
strictly better pure response than s∗j against σ−j. Then, from Lemma 4 of Pearce (1984),
there is a mixed strategy σj for j that weakly dominates s∗j against all correlated strategy
distributions. This σj strictly dominates s∗j against strategy distributions in ∆◦(S−j), so s∗j
is strictly interior dominated for j. Since (ii) does not hold, there is a σ−i ∈ ∆◦(S−i) against
which s∗i is a weak best response. Then, the fact that s∗j is not a strict best response against
any σ−j ∈ ∆◦(S−j) means s∗j 6% s∗i .

OA2 Refinements in the Link-Formation Game

Proposition OA.1. Each of the following refinements selects the same subset of pure
Nash equilibria when applied to the anti-monotonic and co-monotonic versions of the link-
formation game: extended proper equilibrium, proper equilibrium, trembling-hand perfect
equilibrium, p-dominance, Pareto efficiency, and strategic stability. Pairwise stability does
not apply to the link-formation game. Finally, the link-formation game is not a potential
game.

Proof. Step 1. Extended proper equilibrium, proper equilibrium, and trembling-
hand perfect equilibrium allow the “no links” equilibrium in both versions of the
game. For (qi) anti-monotonic with (ci), for each ε > 0 let N1 and S1 play Active with
probability ε2, N2 and S2 play Active with probability ε. For small enough ε, the expected
payoff of Active for player i is approximately (10 − ci)ε since terms with higher order ε
are negligible. It is clear that this payoff is negative for small ε for every player i, and that
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under the utility re-scalings βN1 = βS1 = 10, βN2 = βS2 = 1, the loss to playing Active
is smaller for N2 and S2 than for N1 and S1. So this strategy profile is a (β, ε)-extended
proper equilibrium. Taking ε → 0, we arrive at the equilibrium where each player chooses
Inactive with probability 1.

For the version with (qi) co-monotonic with (ci), consider the same strategies without
re-scalings, i.e. β = 1. Then already the loss to playing Active is smaller for N2 and S2
than for N1 and S1, making the strategy profile a (1, ε)-extended proper equilibrium.

These arguments show that the “no links” equilibrium is an extended proper equilib-
rium in both versions of the game. Every extended proper equilibrium is also proper and
trembling-hand perfect, which completes the step.

Step 2. p−dominance eliminates the “no links” equilibrium in both versions
of the game. Regardless of whether (qi) are co-monotonic or anti-monotonic with (ci),
under the belief that all other players choose Active with probability p for p ∈ (0, 1), the
expected payoff of playing Active (due to additivity across links) is (1 − p) · 0 + p · (10 −
ci) + (1− p) · 0 + p · (30− ci) > 0 for any ci ∈ {14, 19}.

Step 3. Pareto eliminates the “no links” equilibrium in both versions of the
game. It is immediate that the no-links equilibrium outcome is Pareto dominated by the
all-links equilibrium outcome under both parameter specifications, so Pareto efficiency would
rule it out whether (ci) is anti-monotonic or co-monotonic with (qi).

Step 4. Strategic stability (Kohlberg and Mertens, 1986) eliminates the “no links”
equilibrium in both versions of the game. First suppose the (ci) are anti-monotonic
with (qi). Let η = 1/100 and let ε′ > 0 be given. Define εN1(Active) = εS1(Active) = 2ε′,
εN2(Active) = εS2(Active) = ε′ and εi(Inactive) = ε′ for all players i. When each i

is constrained to play si with probability at least εi(si), the only Nash equilibrium is for
each player to choose Active with probability 1 − ε′. In particular, if ε′ < 1/100, then
the Nash equilibrium in the ε-constrained game is not η-close to the “no links” equilib-
rium. To see this, consider N2’s play in any such equilibrium σ. If N2 weakly prefers Ac-
tive, then N1 must strictly prefer it, so σN1(Active) = 1 − ε′ ≥ σN2(Active). On the
other hand, if N2 strictly prefers Inactive, then σN2(Active) = ε′ < 2ε′ ≤ σN1(Active).
In either case, σN1(Active) ≥ σN2(Active). When both North players choose Active
with probability 1 − ε′, each South player has Active as their strict best response, so
σS1(Active) = σS2(Active) = 1 − ε′. Against such a profile of South players, each North
player has Active as their strict best response, so σN1(Active) = σN2(Active) = 1− ε′.

Now suppose the (ci) are co-monotonic with (qi). Again let η = 1/100 and let 0 <

ε′ < 1/100 be given. Define εN1(Active) = εS1(Active) = ε′, εN2(Active) = ε′/1000,
εS2(Active) = ε′ and εi(Inactive) = ε′ for all players i. Suppose by way of contradiction
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there is a Nash equilibrium σ of the constrained game which is η-close to the Inactive
equilibrium. In such an equilibrium, N2 must strictly prefer Inactive, otherwise N1 strictly
prefers Active so σ could not be η-close to the Inactive equilibrium. Similar argument
shows that S2 must strictly prefer Inactive. This shows N2 and S2 must play Active with
the minimum possible probability, that is σN2(Active) = ε′/1000 and σS2(Active) = ε′ .
This implies that, even if σN1(Active) were at its minimum possible level of ε′, S1 would
still strictly prefer playing Inactive because S1 is 1000 times as likely to link with the low-
quality opponent as the high-quality opponent. This shows σS1(Active) = ε′. But when
σS1(Active) = σS2(Active) = ε′, N1 strictly prefers playing Active, so σN1(Active) =
1− ε′. This contradicts σ being η-close to the no-links equilibrium.

Step 5. Pairwise stability (Jackson and Wolinsky, 1996) does not apply to this
game. This is because each player chooses between either linking with every player on the
opposite side who plays Active, or linking with no one. A player cannot selectively cut off
one of their links while preserving the other.

Step 6. The game does not have an ordinal potential, so refinements of
potential games (Monderer and Shapley, 1996) do not apply. To see that this is not
a potential game, consider the anti-monotonic parameterization. Suppose a potential P of
the form P (aN1, aN2, aS1, aS2) exists, where ai = 1 corresponds to i choosing Active, ai = 0
corresponds to i choosing Inactive. We must have

P (0, 0, 0, 0) = P (1, 0, 0, 0) = P (0, 0, 0, 1),

since a unilateral deviation by one player from the Inactive equilibrium does not change
any player’s payoffs. But notice that uN1(1, 0, 0, 1) − uN1(0, 0, 0, 1) = 10 − 14 = −4, while
uS2(1, 0, 0, 1)−uS2(1, 0, 0, 0) = 30−19 = 11. If the game has an ordinal potential, then both
of these expressions must have the same sign as P (1, 0, 0, 1) − P (1, 0, 0, 0) = P (1, 0, 0, 1) −
P (0, 0, 0, 1), which is not true. A similar argument shows the co-monotonic parameterization
does not have a potential either.

OA3 Replication Invariance of PCE

This section argues that PCE is invariant to adding duplicate copies of strategies to the
game. Fix a base game with the strategic form (I, (Si, ui)i∈I) where I is the set of players,
each player i has a finite strategy set Si and utility function ui : S→ R.

Definition OA.1. An extended game with duplicates is any game with the strategic form
(I, (S̄i, ūi)i∈I) such that, for every i ∈ I, S̄i ⊆ Si × N is a finite set with projSi

(S̄i) = Si and
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ūi((sj, nj)j∈I) = ui(s) for all s ∈ S and (nj)j∈I ∈ NI with (sj, nj)j∈I ∈ S̄.

The interpretation is that each player i can have multiple copies of every strategy they
had in the base game, and could have different numbers of copies of different strategies,
where duplicate copies of the same strategy have the same payoff consequences. Mapping
back to the learning framework, we think of different strategies of i in the extended game as
different learning opportunities about −i’s play. Copies of different strategies are learning
opportunities that provide orthogonal information, while copies of the same strategy provide
the same information. As an example, suppose that in the Restaurant Game the critic can
arrive at the restaurant by taking the red bus or the blue bus, and the color of the bus
is not observed by other players, does not change anyone’s payoffs, and does not change
what the critic observes. We can then replace Rc with two actions Rred

c ,Rblue
c at the critic’s

information set and expand the game tree, letting Rred
c and Rblue

c both have the same payoff
consequences as Rc in the original game. This modified game is an extended game with
duplicates for the original game.

Subsection OA3.1 defines player-compatible trembles and PCE in extended games with
duplicates. Using the compatibility relation % from the base game, a tremble profile in
the extended game with duplicates is player compatible if the sum of tremble probabilities
assigned to all copies of s∗i exceeds the sum assigned to all copies of s∗j , whenever s∗i % s∗j .
PCE is then defined using this restriction on trembles. We show that the set of PCE in the
base game coincides with the set of PCE in the extended game with duplicates.

This definition of player-compatible trembles in extended games with duplicates fits with
our interpretation of trembles as experimentation frequencies and an analysis of how learning
dynamics in the extended game compare with those in the base game. The idea is that if
all copies of a strategy si give i the same information about others’ play, then i should be
exactly indifferent between all such copies after all histories in the learning process. Holding
fixed initial beliefs and the social distribution, i’s weighted lifetime average play of si in the
base game should then equal the sum of their weighted lifetime average plays of all copies
of si in the extended game with duplicates. Thus, any comparisons that hold between the
“tremble” probabilities of i onto s∗i and j onto s∗j in the base game must also hold between
the sum of “tremble” probabilities of i onto the copies of s∗i and j onto the copies of s∗j in
the extended game. We formalize this intuition in binary participation games in Subsection
OA3.2 for rational learning and weighted fictitious play.
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OA3.1 PCE in Extended Games with Duplicates

A tremble profile of the extended game ε̄ assigns a positive number ε̄(si, ni) > 0 to every
player i and every pure strategy (si, ni) ∈ S̄i. We define ε̄-strategies of i and ε̄-constrained
equilibrium of the extended game in the usual way, relative to the strategy sets S̄i.

Definition OA.2. Tremble profile ε̄ is player compatible in the extended game if∑ni
ε̄(s∗i , ni) ≥∑

nj
ε̄(s∗j , nj) for all i, j ∈ I, s∗i ∈ Si, s∗j ∈ Sj such that s∗i % s∗j , where % is the player-

compatibility relation from the base game. An ε̄-constrained equilibrium where ε̄ is player
compatible is called a player-compatible ε̄-constrained equilibrium (or ε̄-PCE).

We now relate ε̄-constrained equilibria in the extended game to ε-constrained equilibria
in the base game. Recall the following constrained optimality condition that applies to both
the extended game and the base game:

Fact A.1. A feasible mixed strategy of i is not a constrained best response to a −i profile if
and only if it assigns more than the required weight to a non-optimal response.

We associate with a strategy profile σ̄ ∈ ×i∈I∆(S̄i) in the extended game a consolidated
strategy profile C (σ̄) ∈ ×i∈I∆(Si) in the base game, given by adding up the probabilities
assigned to all copies of each base-game strategy. More precisely, C (σ̄)i(si) := ∑

ni
σ̄i(si, ni).

Similarly, C (ε̄) is the consolidated tremble profile, given by C (ε̄)(si) := ∑
ni
ε̄(si, ni).

Conversely, given a strategy profile σ ∈ ×i∈I∆(Si) in the base game, the extended strategy
profile E (σ) ∈ ×i∈I∆(S̄i) is defined by E (σ)i(si, ni) := σi(si)/N(si) for each i, (si, ni) ∈ S̄i,
where N(si) is the number of copies of si that S̄i contains. Similarly, E (ε) is the extended
tremble profile, given by E (ε)(si, ni) := ε(si)/N(si).

Lemma OA.1. If σ̄ is an ε̄-constrained equilibrium in the extended game, then C (σ̄) is a
C (ε̄)-constrained equilibrium in the base game. If σ is an ε-constrained equilibrium in the
base game, then E (σ) is an E (ε)-constrained equilibrium in the extended game.

PCE is defined as usual in the extended game.

Definition OA.3. A strategy profile σ̄∗ is a player-compatible equilibrium (PCE) in the
extended game if there exists a sequence of player-compatible tremble profiles ε̄(t) → 0 and
an associated sequence of strategy profiles σ̄(t), where each σ̄(t) is an ε̄(t)-PCE, such that
σ̄(t) → σ̄∗.

These PCE correspond exactly to PCE of the base game.

Proposition OA.2. If σ̄∗ is a PCE in the extended game, then C (σ̄∗) is a PCE in the base
game. If σ∗ is a PCE in the base game, then E (σ∗) is a PCE in the extended game.
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In fact, starting from a PCE σ∗ of the base game, we can construct more PCE of the
extended game than E (σ∗) by shifting around the probabilities assigned to different copies
of the same base-game strategy, but all these profiles essentially correspond to the same
outcome.

OA3.2 Learning and Trembles in Binary Participation Games with
Duplicates

We give the simplest illustration of how learning dynamics in extended games with duplicates
relate to those in the base game, using binary participation games. These results can also
be developed for other factorable games, but at the cost of more complicated notation.

Consider a binary participation game for i (Definition 12) as the base game and create an
extended game with duplicates by adding an extra copy of the In strategy for i to the game
tree, called In-d. We show that when ri is an optimal learning policy for i or the weighted
fictitious play heuristic, the discounted lifetime play φi(In; ri, σ−i) for the base game is equal
to the sum φi(In; ri, σ−i)+φi(In-d; ri, σ−i) in the new game, for the same social distribution
σ.

We modify the original game tree Γ and information setsH to arrive at a new game tree Γ̄
with information sets H̄. The basic idea is that In-d gives the same payoffs and information
to i, and −i cannot tell which one i chose.

By the definition of a binary participation game for i, let hi be i’s unique information
set in H. Enumerate the vertices in hi as hi = {v1, ..., vn}. Playing In at vertex vk in the
original tree leads to some subtree Γ(k) ⊆ Γ. Start with Γ̄ = Γ and add a new move, In-d,
to every vk ∈ hi. Append a new subtree Γ̂(k) to Γ̄ for every vk ∈ hi, such that Γ̂(k) is a copy
of Γ(k) (including payoffs at terminal vertices) and playing In-d at vk leads to Γ̂(k). Now we
give a procedure to construct the information sets H̄ to capture the idea that In and In-d
are indistinguishable to others. Start with H̄ = H and let V (k) be the set of vertices in Γ(k).

For every 1 ≤ k ≤ n and v ∈ V (k), find the information set h ∈ H̄ with v ∈ h, then put
h := h ∪ {ṽ}, where ṽ is the copy of v in Γ̂(k). That is, each vertex reachable after i chooses
In-d is indistinguishable to others from its “twin” reachable when i chooses In.

As discussed before, the Restaurant Game is a binary participation game for the critic
and the diner, with going to the restaurant as In and ordering pizza as Out. We illustrate
adding a duplicate copy of Rc for the critic to the game, labeled Rc − d. The critic’s unique
information set contains two vertices, and the new game tree adds two new subtrees to the
original game, highlighted in red.
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The set of histories in the learning framework for i with the extended game is Ỹi =
∪t≥0({In, In-d,Out} × R)t. We now define a notion of equivalence between a stochastic
learning policy in the extended game r̃i : Ỹi → ∆({In, In-d,Out}} and a (deterministic)
learning policy in the original game, ri : Yi → {In,Out}. Basically, r̃i behaves just like ri
except it can randomize between In and In-d.

Definition OA.4. Let ζ : Ỹi → Yi be such that for ỹi ∈ Ỹi, ζ(ỹi) ∈ Yi replaces every instance
of In-d with In. Learning policies r̃i : Ỹi → ∆({In, In-d,Out}} and ri : Yi → {In,Out} are
equivalent up to duplicates if for every ỹi ∈ Ỹi, if ri(ζ(ỹi)) = Out, then also r̃i(ỹi)(Out) = 1.
If ri(ζ(ỹi)) = In, then r̃i(ỹi)(In) + r̃i(ỹi)(In-d) = 1.

The main result of this section shows that rational learning and weighted fictitious play
lead to learning policies that are equivalent up to duplicates in the base game and the
extended game. Furthermore, any pair of such equivalent policies in the two settings lead to
the same lifetime discounted frequencies of playing In for the original game as playing In
and In-d for the extended game against the same social distributions of −i.

Technically, strategies in (Γ,H) and (Γ̄, H̄) are defined over two different domains. To
make sense of i facing the “same” social distribution of −i’s play in the two settings, let
ψ : H̄ → H be the natural isomorphism between the two collections of information sets.
Each information set h̃ in the modified game is either equal to an information set h ∈ H, or
it is an old information set with some extra vertices added, that is there is some (unique) h
with h̃ ) h. Let ψ(h̃) := h. Two strategy profiles σ, σ̃ for (Γ,H) and (Γ̄, H̄) are −i equivalent
if σ̃(h̃) = σ(ψ(h̃)) for all h̃ ∈ H̃−i.

Proposition OA.3. Suppose stochastic learning policy r̃i in the extended game is equivalent
up to duplicates with the learning policy ri in the base game.
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• For a fixed patience parameter 0 ≤ δ < 1 and regular prior gi over others’ play,1 ri is
OPTi if and only if r̃i is an optimal learning policy with the extended game.

• For a fixed decay parameter 0 ≤ ρ < 1 and initial counts Nah
h (∅), ri is WFPi if and

only if after every ỹi ∈ Ỹi, r̃i(ỹi) is supported on strategies that maximize payoffs under
the weighted fictitious play conjecture of −i’s play.

• For −i equivalent social distributions σ, σ̃ for the base game and extended games,
φi(In; ri, σ−i) = φi(In; r̃i, σ̃−i) + φi(In-d; r̃i, σ̃−i).

Theorem 2 shows that in the baseline binary participation game, φi(Ini; ri, σ−i) ≥ φj(Inj; rj, σ−j)
for every social distribution σ whenever Ini % Inj and ri, rj are either OPT or WFP under
the same “initial conditions,” where Ini and Inj refer to i and j’s copies of In. Com-
bining this result with the above proposition, we find a motivation for player-compatible
trembles in the extended game. If r̃i, r̃j are either OPT with the same δ and same prior
beliefs about −ij’s play, or WFP with the same initial counts on −ij’s information sets,
then φi(Ini; r̃i, σ̃−i) + φi(In-di; r̃i, σ̃−i) ≥ φj(Inj; r̃j, σ̃−j) + φj(In-dj; r̃j, σ̃−j) for any social
distribution σ̃ in the extended game, where In-di and In-dj refer to i and j’s copies of In-d.

OA3.3 Proofs

OA3.3.1 Proof of Lemma OA.1

Proof. We prove the first statement by contraposition. If C (σ̄) is not an C (ε̄)-constrained
equilibrium in the base game, then some i assigns more than the required weight to some
s′i ∈ Si that does not best respond to C (σ̄)−i. This means no (s′i, ni) ∈ S̄i best responds to σ̄−i,
since all copies of a strategy are payoff equivalent. Since C (σ̄) and C (ε̄) are defined by adding
up the respective extended-game probabilities, C (σ̄)i(s′i) > C (ε̄)(s′i) means ∑ni

σ̄i(s′i, ni) >∑
ni
ε̄(s′i, ni). So for at least one n

′
i, σ̄i(s′i, n′i) > ε̄(s′i, n′i), that is σ̄i assigns more than

required weight to the non best response (s′i, n′i) ∈ S̄i. We conclude σ̄ is not an ε̄-constrained
equilibrium, as desired.

Again by contraposition, suppose E (σ) is not an E (ε)-constrained equilibrium in the
extended game. This means some i assigns more than the required weight to some (s′i, n

′
i) ∈

S̄i that does not best respond to E (σ)−i. This implies s′i does not best respond to σ−i. By
the definition of E (ε) and E (σ), if E (σ)i(s′i, n′i) > E (ε)(s′i, n′i), then also E (σ)i(s′i, ni) >

1The prior is over ×h∈H−i
∆(Ah) in the original game and over ×h̃∈H̃−i

∆(Ah̃) in the extended game, but
we identify ∆(Ah̃) with ∆(Aψ(h̃)) for each h̃ ∈ H̃−i. The same identification applies for the initial counts in
the original and extended games.
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E (ε)(s′i, ni) for every ni such that (s′i, ni) ∈ S̄i. Therefore, we also have σi(s′i) > ε(s′i), so σ
is not an ε-constrained equilibrium in the base game as desired.

OA3.3.2 Proof of Proposition OA.2

Proof. Suppose σ̄∗ is a PCE in the extended game. So, we have σ̄(t) → σ̄∗ where each σ̄(t)

is an ε̄(t)-PCE, and each ε̄(t) is player compatible (in the extended game sense). This means
each C (ε̄(t)) is player compatible in the base game sense, and furthermore each C (σ̄(t)) is an
C (ε̄(t))-constrained equilibrium (by Lemma OA.1), hence an C (ε̄(t))-PCE. Since ε̄(t) → 0,
C (ε̄(t)) → 0 as well. Since σ̄(t) → σ̄∗, C (σ̄(t)) → C (σ̄∗). We have shown C (σ̄∗) is a PCE in
the base game.

The proof of the other statement is exactly analogous.

OA3.3.3 Proof of Proposition OA.3

Proof. We have ri = OPTi if and only if for every ỹi ∈ Ỹi, ri(ψ(ỹi)) has the (weakly) higher
Gittins index. Since ri, r̃i are equivalent up to duplicates, this means for any ỹi ∈ Ỹi, r̃i(ỹi)
either puts probability 1 on Out or probability 1 on In and In-d. Since In and In-d can be
viewed as two identical ways of pulling the risky arm in a two-armed bandit with one safe
arm and one risky arm, r̃i is optimal if and only if r̃i(ỹi) assigns positive probability 1 to In
and In-d when the risky arm has a (weakly) higher Gittins index than the safe one. These
two statements are equivalent when r̃i, ri are equivalent up to duplicates, since the Gittins
index of the risky arm is the same under ỹi and ψ(ỹi). Similarly, ri = WFPi if and only if
for every ỹi ∈ Ỹi, ri(ψ(ỹi)) has the (weakly) higher “WFP” index, defined as the one-period
expected payoff of playing a certain strategy against the weighted fictitious play conjecture
of −i’s play. These indices are the same after history ỹi in the extended game and after
ψ(ỹi) in the original game.

Finally, let X t
i be the random variable representing i’s play in period t in the base game

under policy ri and social distribution σ−i. Let X̃ t
i be the random variable representing i’s

play in period t in the extended game under policy r̃i and social distribution σ̃−i. Because ri, r̃i
are equivalent up to duplicates to the empty history, Pri,σ−i

[X1
i = Out] = Pr̃i,σ̃−i

[X̃1
i = Out].

Since σ−i and σ̃−i are −i equivalent, (ri, σ−i) and (r̃i, σ̃−i) generate the same distribution over
length-1 histories (up to duplicates), i.e. Pri,σ−i

[yi] = Pr̃i,σ̃−i
[ψ−1(yi)] for all yi ∈ ({In,Out}×

R). By induction suppose Pri,σ−i
[yi] = Pr̃i,σ̃−i

[ψ−1(yi)] for all yi ∈ ({In,Out}×R)t, for some
t ≥ 1. If ri(yi) = Out, then using the fact that ri, r̃i are equivalent up to duplicates,
r̃i(ỹi)(Out) = 1 for all ỹi ∈ ψ−1(yi). Thus, for all x ∈ R, by the inductive hypothesis
Pri,σ−i

[(yi,Out, x)] = Pr̃i,σ̃−i
[ψ−1(yi) × (Out, x)], and Pri,σ−i

[(yi, In, x)] = Pr̃i,σ̃−i
[ψ−1(yi) ×
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(In, x)] = Pr̃i,σ̃−i
[ψ−1(yi)× (In-d, x)] = 0. On the other hand, if ri(yi) = In, then using the

fact that ri, r̃i are equivalent up to duplicates, r̃i(ỹi)(In)+r̃i(ỹi)(In-d) = 1 for all ỹi ∈ ψ−1(yi).
Thus, for all x ∈ R, by the inductive hypothesis, Pri,σ−i

[(yi,Out, x)] = Pr̃i,σ̃−i
[ψ−1(yi) ×

(Out, x)] = 0, and Pri,σ−i
[(yi, In, x)] = Pr̃i,σ̃−i

[ψ−1(yi)× (In, x)]+Pr̃i,σ̃−i
[ψ−1(yi)× (In-d, x)].

In either case, we get Pri,σ−i
[yi] = Pr̃i,σ̃−i

[ψ−1(yi)] for all yi ∈ ({In,Out} × R)t+1, and
also Pri,σ−i

[X t
i = Out] = Pr̃i,σ̃−i

[X̃ t
i = Out]. By induction we get Pri,σ−i

[X t
i = Out] =

Pr̃i,σ̃−i
[X̃ t

i = Out] for every t ≥ 1, thus φi(In; ri, σ−i) = φi(In; r̃i, σ̃−i) +φi(In-d; r̃i, σ̃−i).
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