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We study the problem of designing a recommendation system for network goods under the constraint of
differential privacy. Agents living on a graph face the introduction of a new good and undergo two stages of
adoption. The first stage consists of private, random adoptions. In the second stage, remaining non-adopters
decide whether to adopt with the help of a recommendation system A. The good has network complemen-
tarity, making it socially desirable for A to reveal the adoption status of neighboring agents. The designer’s
problem, however, is to find the socially optimal A that preserves privacy. We derive feasibility conditions
for this problem and characterize the optimal solution.
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1. INTRODUCTION
Recommendation systems, in their content-based and collaborative forms, have been
well-studied in the past two decades (see [Adomavicius and Tuzhilin 2005] for an
overview). More recently, a new kind of social recommendation has become popular on
several websites. Platforms that include a social networking component have begun
to employ user friendship on the site as a tool towards better recommendations. The
following examples illustrate the variety of products that this form of recommendation
has been applied to:

(1) Netflix launched Netflix Social in 2013. This feature looks at a user’s Netflix friends
and pushes films and TV shows that her friends have marked as favorites [Johnson
2013].

(2) Last.fm’s music recommendation takes into account the musical taste of a user’s
Last.fm friends [Konstas et al. 2009]. The site will recommend songs that the user’s
friends have listened to.

(3) Facebook’s “people you may know” feature suggests new “products” (new Facebook
friends) to a user based on data from her existing Facebook friends (their friends
lists) [Facebook 2008].

This novel social approach is distinct from collaborative filtering, where the website
compares a user against its whole database of users, producing a recommendation
based on information from those users who are most similar to her. The new approach
uses voluntary friendship in an online social network as the main basis for recommen-
dation.
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The present work aims to examine the interplay between privacy concerns and in-
centive compatibility in such social recommendation systems. On one hand, privacy is
an especially pressing issue here due to the sparse nature of these social recommen-
dation systems. The website generates its product suggestions for a user not from its
entire database of users, but primarily from the small subset of users who are her
neighbors in a social graph. In doing so, the website may reveal some sensitive infor-
mation. For instance, some users may regard their Facebook friends lists as private
information. However, as the security company Quotium points out, the “people you
may know” suggestions represent outputs produced from from precisely this private
information [Abezgauz 2013]. On the other hand, users are not obliged to follow the
recommendations and one expects that they will have some prior belief about the qual-
ity of various products. If the recommendations are too noisy, users will ignore them.
Thus we would want our system to be “incentive compatible”, in the sense that users
who receive a recommendation will voluntarily act upon them.

In markets where the recommender can only produce non-compulsory recommen-
dations under the constraint of privacy, we are interested in question such as: Is it
possible to design a social recommendation system that preserves a prescribed level
of privacy, while still producing useful outputs? If so, what does the socially optimal,
incentive compatible, privacy preserving system look like?

1.1. Our Contributions
We view our contribution to the literature as threefold: (1) we propose a model that
captures the interplay between privacy and incentive compatibility, in the setting of
network good adoption; (2) for each desired level of privacy, we derive necessary and
sufficient conditions for the existence of a recommendation system that satisfies both
incentive compatibility constraint and privacy; (3) when at least one such system ex-
ists, we characterize the “optimal” system in terms of social welfare.

Since the relationship between privacy and incentive compatibility in the setting
of friendship-based social recommendation systems is not a well-studied problem, the
first task is to come up with the right framework. We take inspiration from the eco-
nomics literature and study a model where agents living on a network face the intro-
duction of a new network good. Each agent contemplates whether to pay a cost c > 0 to
adopt the good, whose value to the agent depends on how many of her social network
neighbors are also adopters. This model is appropriate for two reasons. First, network
goods best illustrate the conflict between social gains of information disclosure and the
constraints imposed by privacy concerns. Disregarding privacy, the first-best strategy
of the website would be to recommend adoption of the network good to precisely those
agents whose friends have adopted the good. However, this strategy reveals to every
agent the adoption status of her friends, which clearly violates privacy. Second, adop-
tion of a new good is usually a voluntary matter, so that the incentive compatibility of
the recommendation system becomes important.

Next, we find that for each desired level ε of privacy, there exists a social recommen-
dation system that satisfies both incentive compatibility and privacy if and only if c is
sufficiently low (call such systems feasible). Specifically, since incentive compatibility
and privacy are both concepts defined in terms of individual agents, we may first ask
whether there exists a feasible system at each agent. The result is that there is a bound
c̄(d, ε, p) so that there is a feasible system for an agent with d friends in the network
each with p probability of being adopters if and only if c < c̄(d, ε, p). Taking the mini-
mum of this bound across all agents in the network gives the analogous network-based
result.

Finally, when the set of feasible systems is non-empty, the socially optimal feasible
system is the one that uses a “cutoff” k̄(d, ε, p, c). For an agent with exactly k̄ adopter
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friends, the system recommends with probability exp(ε)
exp(ε)+1 . For an agent with fewer

than k̄ adopter friends, the system recommends adoption with a probability that de-
creases exponentially at rate ε as the number of adopter friends decreases. For an agent
with more than k̄ adopter friends, the probability that the system does not recommend
adoption decreases at rate ε as the number of adopter friends increases.

2. BACKGROUND AND RELATED WORK
2.1. Differential Privacy
In the past decade, two incidents illustrated the possibility of privacy breach for even
anonymized data. The first incident involved Netflix. As part of a contest, the company
released anonymized viewing and rating history of some of its customers. Narayanan
and Shmatikov managed to match the Netflix data to user data on IMDB, uncover-
ing the identity of many user in the anonymized dataset [Narayanan and Shmatikov
2008]. The second incident involved Massachusetts Group Insurance Commission, who
released anonymized patient information. Sweeney succeeded in discovering the iden-
tity of many anonymized patients and thus gaining access to their medical history
[Dwork 2008]. One de-anonymized patient was in fact the governor of Massachusetts.

These incidences prompted the security community to seek a higher standard of data
privacy than anonymity. The community settled on the notion of differential privacy,
originally proposed by Dwork [Dwork 2006]. Differential privacy roughly says a single-
entry change in the underlying database should not produce a clearly distinguishable
effect on the output of the algorithm. Formally, write D for the set of possible states
of the database. Then the S−valued randomized algorithm A : D → S is said to be
ε-differentially private if for every S ⊆ S and D,D′ ∈ D where D′ differs from D in only
a single row,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S].

In some sense one may view the condition of ε-differential privacy as a “continuity”
condition for A. A small change in the input should produce only a correspondingly
small change in the output.

2.2. Differential Privacy and Mechanism Design
Recently many papers have explored the intersection between differential privacy and
mechanism design. These works fall roughly into two strands: those that treat differ-
ential privacy as a tool for mechanism design, and those that treat it as a desideratum
of mechanism design.

The first strand began with McSherry and Talwar who pointed out that a differen-
tially private mechanism has truth-telling as an approximately dominant strategy for
both individuals and coalitions [McSherry and Talwar 2007]. They also proposed the
“exponential mechanism”, a differentially private mechanism for generic mechanism
design problems. Several later papers have built on this result. Nissim et al. showed a
suitable lottery between the exponential mechanism and a “commitment mechanism”
implements an ex-post Nash equilibrium that is approximately optimal with respect
to the objective function [Nissim et al. 2012]. Huang et al. proved that if the objective
is to maximize social welfare, then a suitably instantiated exponential algorithm satis-
fies differential privacy, truth-telling, and approximate optimality [Huang and Kannan
2012].

More recently, Kearns et al. considered the problem of using recommendation as
an equilibrium coordination device for games of incomplete information [Kearns et al.
2014]. By contrast, in the present paper agents will have myopic payoffs and thus
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not suffer from coordination problems. The role of the mechanism is not so much to
coordinate as to inform agents of the state of the world subject to privacy constraint.

An example of work in the second strand of literature is Hsu et al. on private alloca-
tions [Hsu et al. 2013]. They propose an efficient algorithm for solving the allocation
problem of assigning n objects to m individuals, with a relaxed version of differential
privacy as an additional constraint. Our work also uses differential privacy as a con-
straint rather than a tool. However, our interest lies in explicitly characterizing the
solution to our problem, not in finding an algorithm for computing it. We also use a
relaxed version of differential privacy. Namely, we ask that the recommendation given
to each player i is differentially private from the types of all j 6= i. This is the “mir-
ror image” of the “joint differential privacy” that Hsu et al. use, which requires the
distribution of recommendations given to all j 6= i be differentially private from i’s
type.

2.3. Social Recommendation
The literature on the use of social network data to enhance recommendations proba-
bly started with Konstas et al.’s work in 2009 [Konstas et al. 2009]. There, the authors
collected data from Last.fm and showed that incorporating friendship information im-
proves recommendations. Following their work, other groups have applied social net-
working data to recommendations of music [Bu et al. 2010], points of interest [Ye et al.
2010], and enterprise-level social media content [Guy et al. 2010].

Several recent papers have studied the constraints that differential privacy imposes
on social recommendation. The two most relevant to this work are Machanavajjhala et
al. [Machanavajjhala et al. 2011] and Zhu et al. [Zhu et al. 2013]. Machanavajjhala’s
group emphasized that the trade-off between accuracy of result and privacy of output
is a general phenomenon and derived general lower bounds for achievable privacy pa-
rameter ε for algorithms that guarantee constant accuracy. Compared to their work,
we aim to study a more specific problem of economic interest, where we can explicitly
characterize the optimal algorithm. Zhu’s group proposed a form of social collaborative
filtering that protects privacy. For us, there is only a single item under consideration–
the network good to be adopted. Thus the problem is not so much the collaborative fil-
tering one of predicting user rating of a new item based on her ratings of past items, as
it is disclosing the adoption status with respect to a single good in a privacy-sensitive
way.

2.4. Innovation Diffusion
This work relates to the economic literature on innovation diffusion in a network set-
ting. The typical model opens with the appearance of a new product. Agents located
on a network decide whether or not to adopt the product, where their payoff from
adoption depends on the adoption status of their neighbors [Ellison 1993; Jackson and
Yariv 2007; Young and Kreindler 2012]. These models study the consequences of re-
peated local coordination games, as well as the limiting distribution of adoption in the
network. In contrast to these papers with decentralized agents, our work asks what
welfare improvements can be made if a central information authority can intervene in
the adoption process.

3. MODEL
Let G = (V,E) denote a graph where V = {v1, ..., vn} represents the agents. The graph
models a social network that faces the introduction of a new good with network exter-
nality. The edges represent a symmetric relationship such as friendship, along which
the externality effect of the network good takes form. Agents are imperfectly informed
about the value of the good, since the adoption status of other agents in the network
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are treated as private information. A designer wishes to make recommendations to
agents as to maximize social welfare, while preserving data privacy.

We consider the following two stage model.
STAGE I: INITIAL ADOPTION. Each node independently adopts the good with proba-

bility p. The adoption status of node vi is θi ∈ {0, 1}, which is private to vi. This means
vi knows the realization of θi, but only the distribution of θj for j 6= i. Summarize
STAGE I adoption state of the network as θ = (θ1, ..., θn) ∈ Θ, with Θ := {0, 1}n.

STAGE I models an adoption process before the intervention of the recommendation
system. When a new product appears on the market, agents may be heterogeneous
with respect to their willingness to try out this product. In our model, this decentral-
ized process of adoption results in p fraction of the agents being early adopters, who
are perhaps fans of related products. Moreover, STAGE I gives rise to a common prior
under which agents can calculate the expected payoff from adopting the network good
after receiving a recommendation.

STAGE II: RECOMMENDATION. The designer sends a recommendation to a subset
of STAGE I non-adopters. Then, each non-adopter decides whether to adopt. If non-
adopter vi decides to adopt in STAGE II, he receives payoff φ

(∑
w∈N(vi)

θw

d(vi)

)
− c, where

c > 0 represents cost of adoption and φ is a continuous, increasing function normalized
to have φ(0) = 0 and φ(1) = 1. If he remains a non-adopter, his payoff is 0. Since vi does
not know the value of θj for j 6= i, vi only observes his payoff ex-post.

We note that non-adopter agents in our model are myopic: they consider only the
short run payoff of their actions and do not take into account future changes in adop-
tion status of the network. In the alternative, game-theoretic model, the decision of
each STAGE I non-adopter affects not only her payoff, but also the payoffs of her neigh-
bors. That is, a STAGE II adopter vi benefits not only from those of her neighbors who
adopted as of the end of STAGE I, but also from new neighboring adopters in STAGE II.
The downside to this alternative model is that it has too many equilibria. In particular,
there is an equilibrium where all STAGE I non-adopters adopt in Stage II, in antici-
pation of maximal network externality at the end of STAGE II. Assuming p < c, there
is another equilibrium where no one adopts in STAGE II, correctly expecting minimal
network externality. The multitude of equilibria makes such a model unattractive.

We interpret φ(k/d) as the (gross) benefit of adoption when k out of d of one’s friends
have adopted the good. The assumption that φ is increasing captures the network
complementarity of the good. Examples of φ include:

— φ(x) = x. This is perhaps the simplest model where the gross benefit of adoption for
vi is exactly the fraction of vi’s neighbors who are STAGE I adopters.

— φ(x) = xα, for parameter α > 0. For 0 < α < 1, φ is strictly concave and models a
network good with decreasing marginal benefit of having one more friend adopt the
good. For α > 1, φ is strictly convex and there is increasing marginal benefit.

— φ(x) = exp(β(1+α)x)
exp(β(1+α)x)+exp(β(1−x)) , for parameters α, β > 0. This is the logit response

function, a commonly used model in the discrete choice literature [McFadden 1976]
and stochastic learning literature [Blume 1993, 1995].

Knowing φ, the designer announces a stochastic function A : Θ → Θ before STAGE I,
mapping each STAGE I adoption status θ ∈ Θ to a profile of recommendations. Specif-
ically, for all i with θi = 0, Ai(θ) = 1 means A sends a recommendation to i, while
Ai(θ) = 0 means A does not.

Upon receiving or not receiving a recommendation, each node vi with θi = 0 com-
putes the conditional expected payoff from adopting the good:
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πi(Ai) := Eθ

[
φ

(∑
w∈N(vi)

θw

d(vi)

)
− c

∣∣∣∣ Ai
]
.

and node vi decides to adopt if and only if πi ≥ 0.
The problem of the designer is a constrained maximization problem.
(OBJECTIVE) Social welfare (SW) computes the expected social gain from A.

Eθ

[
EA

[∑
vi∈V

1{θi=0} · 1{πi≥0} ·

(
φ

(∑
w∈N(vi)

θw

d(vi)

)
− c

)]]
. (SW)

To interpret, for every realization of θ, we restrict attention to those nodes vi who
have not adopted the network good in STAGE I. For every realization of A, each node
with θi = 0 either receives a recommendation from the designer or receives no recom-
mendation. These nodes then compute the conditional expected payoff from adopting
the network good based on this signal. Nodes with πi ≥ 0 decide to adopt and we com-
pute the sum of their payoffs. Since both θ and A are stochastic, we take expectations
over these two random variables to arrive at a deterministic objective function.

Note, however, A is a function of θ. Choosing A to maximize SW is equivalent to
choosing A(θ) to maximize the inner expectation of SW at every θ.

(CONSTRAINT 1) Incentive compatibility (IC) says each agent must find it beneficial
to do as recommended. For every i with θi = 0,

Eθ,A
(
φ
(∑

w∈N(vi)
θw

d(vi)

)
− c

∣∣∣∣ Ai(θ) = 1

)
≥ 0

Eθ,A
(
φ
(∑

w∈N(vi)
θw

d(vi)

)
− c

∣∣∣∣ Ai(θ) = 0

)
≤ 0

(IC)

IC says a node expects to receive at least a payoff of 0 from adoption conditional on
not being a STAGE I adopter and receiving a recommendation at the start of STAGE II.
Also, a node expects to receive no more than 0 payoff from adoption conditional on not
being a STAGE I adopter and not receiving a recommendation at the start of STAGE
II. (Some authors, such as Myerson, also call this the obedience constraint [Myerson
1988].)

There is a Bayesian interpretation to IC. Each non-adopter vi has a prior belief about
the distribution of θ, which are the payoff relevant states. The realization of Ai(θ)
is the data that vi receives. Since vi knows A, she knows the likelihood of receiving
this data given different θ. So, she forms a posterior belief about θ based on the data
and computes her expected payoff from adoption according to this posterior. IC says
following the recommendation is the right thing to do based on this posterior.

(CONSTRAINT 2) ε-differential privacy (DP) requires that A is not too sensitive to
small changes in θ. For any θ, θ′ differing in only one component and for χ ∈ {0, 1},

Pr
[
Ai(θ) = χ

]
≤ exp(ε) · Pr

[
Ai(θ′) = χ

]
. (DP)

This is a relaxation of the usual ε-differential privacy condition in the context of net-
work, where Θ plays the role of the “database” in standard settings with ε-differential
privacy. We only ask that the recommendation given to individual i is not too sensitive
to the types of all j 6= i. This relaxation is motivated by a no-collusion assumption. If
every player only observes their own recommendation and there is no exchange of in-
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formation, then there will be no breach in privacy as long as our version of differential
privacy is satisfied.

A stochastic function A is called feasible if it satisfies both IC and DP.
The constrained optimization problem of the designer is to pick a feasible A to

maximize SW.

The key feature of the model is the tension between the IC and DP constraints. DP
requires the recommendations to not be too informative of the adoption status of the
neighbors. However, IC requires that the recommendation be sufficiently informative.
In the two extreme cases, making uniformly random recommendations to every node
certainly obeys DP, but violates IC if c is sufficiently high. Making socially optimal
recommendations (i.e. recommend a node to adopt if and only if its gain from adop-
tion is positive) satisfies IC, but may violate DP for sufficiently small ε. These two
competing constraints reflect the classic tension between preserving data privacy and
producing useful outputs in differential privacy problems.

4. A TOY EXAMPLE
Consider a very simple network consisting of only two vertices connected with an edge.
Set DP parameter ε = ln(2), probability of STAGE I adoption p = 0.2, and cost of Stage
II adoption c = 0.25. Suppose φ(x) = x. We use this “toy example” to illustrate the
geometry of the problem.

It is easy to see that a recommendation system in this case is completely charac-
terized by two probabilities l0, l1 ∈ [0, 1], where l0 is the probability that the designer
recommends adoption to an agent whose neighbor did not adopt in STAGE I, l1 is the
probability of recommendation when her neighbor did adopt. We can thus think of the
set of all possible recommendation systems as [0, 1]× [0, 1].

In Figure 1 we plot the subsets of recommendation systems that satisfy DP and IC.
It is convenient to consider the “two halves” of the DP constraint separately, namely

Pr
[
Ai(θ) = 1

]
≤ exp(ε) · Pr

[
Ai(θ′) = 1

]
(DP1)

and

Pr
[
Ai(θ) = 0

]
≤ exp(ε) · Pr

[
Ai(θ′) = 0

]
(DP2)

As one may expect, the subset of recommendation systems that satisfies each half
of DP lies along a “fat diagonal”, shown as DP1 an DP2 in the figure. In DP1, we
need l0 to be not too different from l1 as to avoid disclosing the adoption status of an
agent’s neighbor. In DP2, a similar constraint is imposed on the probabilities of non-
recommendation, (1− l0) and (1− l1). The set of recommendation systems that satisfy
DP is the diamond-shaped intersection between DP1 and DP2. On the other hand, IC
captures the upper left quadrant of the graph. In order for the agent to adopt the good
when recommended to do so, the recommendation must be sufficiently informative
about the neighbor’s adoption status. This is exactly the upper left corner of the plot,
which contains points with low l0 and high l1.

One can visualize the tension between DP and IC. DP pushes the recommendation
system to lie along the diagonal. IC wants the system to lie in the upper left corner.
In particular, if ε decreases, then the width of the “DP diamond” shrinks. Meanwhile,
if c increases or p decreases, then the “IC triangle” shifts further to the upper left.
Thus with sufficiently small ε, sufficiently large c, and sufficiently small p, there will
be no intersection between the “DP diamond” and the “IC triangle” except the trivial
solution of (0, 0), making the problem essentially infeasible.
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Fig. 1. Recommendation systems that satisfy DP and IC in a toy example with two agents, ε = ln(2),
p = 0.2, c = 0.25. Here l0 refers to the probability of recommendation when an agent’s neighbor is a STAGE
I non-adopter, whereas l1 refers to this probability when the neighbor has adopted in STAGE I. The gray
region refers to (l0, l1) pairs that satisfy IC. The shaded black region refers to (l0, l1) that satisfy (the two
halves of) DP. Their intersection contains all the feasible recommendation systems.

In the case where the two regions have some intersection other than (0, 0), the prob-
lem is to maximize SW over this intersection. In Figure 2, we show a heat map of SW
as a function of l0 and l1, with DP and IC drawn in as reference lines.

Note that the global maxima of SW occur at two corners: l0 = 0, l1 = 1 and l0 = 1, l1 =
0. In both cases, the designer’s recommendation acts as a signal that perfectly reveals
the adoption status of the neighbor. In the first system, an agent adopts the good if
and only if recommended to do so. In the second system, an agent adopts if and only
if not recommended to do so. Note that the second situation seems pathological and is
eliminated by the IC constraint. In fact, none of the global maximum can be achieved
due to the DP constraint binding the feasible region along the central diamond. In this
example, the point that maximizes SW in the feasible region is ( 1

3 ,
2
3 ).

5. THEORETICAL RESULTS
We will assume throughout this section that the cost of adoption is not too small rela-
tive to its benefits. Specifically, we make the following assumption:

c ≥
d∑
k=0

φ (d/k) ·
(
d

k

)
· pk(1− p)d−k (Non-Trivial Cost)

Note that this condition simplifies to c ≥ p when φ(x) = x. Without this assumption,
there is no role for recommendation – agents will find it beneficial to adopt even in its
absence. In that case, the system that always sends a recommendation to every agent
is feasible.

In the presence of Non-Trivial Cost, the mechanism that never recommends adop-
tion to any agent is evidently feasible. Does there always exist another feasible A? The
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Fig. 2. Heat map of SW as a function of (l0, l1) in the toy example. The boundaries of DP and IC are shown
for reference.

answer is no. The following proposition provides a complete characterization of the set
of costs c that admit at least one feasible, non-trivial A, holding privacy requirement ε
and initial adoption parameter p fixed.

PROPOSITION 5.1. Fix a node v that did not adopt the good in the first stage, and
let d = d(v). There exists a stochastic recommendation function A satisfying IC and DP
for v if and only if the cost of adoption c ≤ c̄(d, ε, p), where we define

c̄(d, ε, p) =
1

(1− p+ peε)d

d∑
k=0

φ(
k

d
)

(
d

k

)
(peε)k(1− p)d−k. (1)

PROOF. We first lay out some notations that will be useful later. Define lv(Θ) =
Pr[Av(Θ) = 1] be the likelihood of recommendation given profile Θ, in which θv = 0. De-
note by ΘN(v) the projection of Θ onto the subspace spanned by N(v) := {v1, v2 . . . , vd},
the set of neighbors of v. It is often times easier to work with lv(ΘN(v)), which is the
conditional probability of recommendation to v, given θv = 0 and the partial profile
ΘN(v). Formally,

Av(ΘN(v)) =
∑

θu:u∈V−{v}−N(v)

Av(θv,ΘN(v), {θu})
∏

u∈V−{v}−N(v)

Pr[θu]

 . (2)

DP1 (See Section 4) imposes the following ratio inequality

lv(Θ) ≤ exp(ε) · lv(Θ̂), whenever Θ, Θ̂ differ in at most one coordinate. (3)

From (2), the same must also be true for the conditional probabilities lv(ΘN(v)).
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Next, for each k (0 ≤ k ≤ d), let lk be the conditional probability that the social
planner makes a recommendation to v, given θv = 0 and that the profile ΘN(v) sums
to k. Because each coordinate of ΘN(v) is independent and identically distributed, we
have

lk =
1(
d
k

) ∑
θv1+···+θvd=k

lv(ΘN(v)). (4)

We claim that lk+1 ≤ exp(ε) · lk. To see this, fix k. Create two sets Sk, Sk+1 consisting
of profiles ΘN(v) that have sum k and k + 1 respectively. For every ΘN(v) ∈ Sk and
Θ̂N(v) ∈ Sk+1 that differ in at most one coordinate, we can apply (3). Adding up all
such inequalities, we obtain

(k + 1)
∑

θv1+···+θvd=k+1

lv(ΘN(v)) ≤ exp(ε) · (d− k)
∑

θ̂v1+···+θ̂vd=k+1

lv(Θ̂N(v)),

or by (4)

lk+1 ≤ exp(ε) · lk. (5)

Similar analysis via DP2 gives:

(1− lk+1) ≥ exp(−ε) · (1− lk). (6)

Finally define

pdk =

(
d

k

)
pk(1− p)d−k. (7)

to be the prior probability (before stage II) that the profile ΘN(v) has sum k.

Using pdk, lk and applying Bayes’ rule, we calculate that the agent’s expected utility
conditional on recommendation is

E[φ(
k

d
)|Av = 1] =

∑d
k=0 φ(kd ) · pdk · lk∑d

k=0 p
d
k · lk

. (8)

The IC constraint can be rewritten compactly as (8) ≥ c.

With these preliminaries we can now prove the proposition:
(Sufficiency): Consider any recommendation function given by (assuming θv = 0):

lv(Θ) = lv(ΘN(v)) = λ · exp(ε(θv1 + · · ·+ θvd)); (9)

where λ > 0 is a constant independent of the realization of Θ. For λ sufficiently small,
(9) is a well defined probability, so A is well-defined.

Under this construction DP1 is trivially satisfied and DP2 is satisfied for all suffi-
ciently small λ. Moreover, (5) holds with equality, which implies that lk is proportional
to exp(εk). (7) thus evaluates to c̄(d, ε, p), which means agents the incentive to adopt
the good when recommended to do so, i.e.

d∑
k=0

(φ(
k

d
)− c) · pdk · lk ≥ 0.
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Note that under “Non-Trivial Cost”,

d∑
k=0

(φ(
k

d
)− c) · pdk ≤ 0.

Therefore,

d∑
k=0

(φ(
k

d
)− c) · pdk · (1− lk) ≤ 0.

So agents have no incentive to adopt when not recommended to do so.

(Necessity): We show that under (5), (6) and (7), the maximum of (8) is c̄(d, ε, p).
Equivalently,

d∑
k=0

(
φ(
k

d
)− c̄

)
pdk · lk ≤ 0.

This will follow from Proposition 5.4, which characterizes the recommendation proba-
bilities lk that maximize v’s expected utility for arbitrary costs.

An especially elegant version of the above bound occurs when φ(x) = x. In that case:

COROLLARY 5.2. c̄(d, ε, p) = exp(ε)·p
1−p+exp(ε)·p .

PROOF. First observe that
∑d
k=0 k

(
d
k

)
akbd−k = a · d · (a+ b)d−1. This comes from first

expanding

(a+ b)d =

d∑
k=0

(
d

k

)
akbd−k.

Applying d
da to both sides and then multiplying both sides by a to obtain:

a · d · (a+ b)d−1 =
d∑
k=1

k

(
d

k

)
akbd−k.

Hence the observation.
From equation (1), c̄(d, ε, p) = 1

(1−p+p·exp(ε))d

∑d
k=0 φ(kd )

(
d
k

)
(p ·exp(ε))k(1−p)d−k. In the

case where φ(x) = x, this simplifies to:

1

(1− p+ p · exp(ε))d
· 1

d

d∑
k=0

k

(
d

k

)
(p · exp(ε))k(1− p)d−k.

Applying the observation above yields:

1

(1− p+ p · exp(ε))d
· 1

d
· (1− p+ p · exp(ε))d−1 · (p · exp(ε)) · d.

which simplifies readily into the desired expression.
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This corollary says when φ(x) = x, c̄ is independent of d, making the bound “topology-
free”. In other words, our necessary and sufficient conditions for the existence of a
feasible algorithm holds without making any assumptions about the structure of the
network G.

The simplicity of this result depends crucially on the linear functional form of φ.
However, it turns out that we also know a lot about c̄ when we only assume decreasing
marginal return–φ concave.

PROPOSITION 5.3. c̄(d, ε, p) as defined in (1) is increasing in ε and p, with
limd→∞ c̄(d, ε, p) = φ( p·exp(ε)

1−p+p·exp(ε) ). Moreover if φ is concave, then c̄(d, ε, p) increases in
d.

PROOF. For convenience, we write λ := p·exp(ε)
1−p+p·exp(ε) . (1) can be rewritten as:

c̄(d, ε, p) = c̄(d, λ) =
d∑
k=0

φ(
k

d
)

(
d

k

)
λk(1− λ)d−k. (10)

Its derivative with respect to λ is d ·
∑d−1
k=0

(
φ(k+1

d )− φ(kd )
) (

d−1
k

)
λk(1 − λ)d−1−k ≥ 0.

Because λ increases in ε and p, so does c̄. Alternatively, a higher ε means a more
relaxed DP constraint, while a higher p makes IC easier to satisfy. Either effect leads
to a higher c̄.

To prove that c̄(d, λ) converges to φ(λ), we first show

d(λ−δ)∑
k=0

(
d

k

)
λk(1− λ)d−k ≤ δ for all large d,∀δ > 0. (11)

Note that the ratio between consecutive summand between cons in (11) is k+1
d−k ·

1−λ
λ ,

which is less than 1 − δ for k ≤ d(λ − δ) + O(1). The inequality thus follows from a
simple calculation of geometric sums.

Now using (10), (11), we obtain that

c̄(d, λ) ≥
∑

k>d(λ−δ)

φ(
k

d
)

(
d

k

)
λk(1− λ)d−k

≥ φ(λ− δ)
∑

k>d(λ−δ)

(
d

k

)
λk(1− λ)d−k

≥ (1− δ) · φ(λ− δ)

for all large d. Similarly we have

c̄(d, λ) =
∑

k≤d(λ+δ)

φ(
k

d
)

(
d

k

)
λk(1− λ)d−k +

∑
k>d(λ+δ)

φ(
k

d
)

(
d

k

)
λk(1− λ)d−k

≤ φ(λ+ δ) + δ.

Letting δ go to zero and using the continuity of φ, we conclude limd→∞ c̄(d, λ) = φ(λ).
This concludes the proof of the proposition and shows that in fact, the limit does not
depend on the shape of φ.
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Now fixing λ, we show that c̄ increases in d for concave φ. From (10) we have

c̄(d, λ) =
d∑
k=0

φ(
k

d
)

(
d

k

)(
λk+1(1− λ)d−k + λk(1− λ)d−k+1

)
=

d+1∑
k=0

λk(1− λ)d−k+1

(
φ(
k

d
)

(
d

k

)
+ φ(

k − 1

d
)

(
d

k − 1

))

=
d+1∑
k=0

λk(1− λ)d−k+1

(
d+ 1

k

)(
d− k + 1

d+ 1
· φ(

k

d
) +

k

d+ 1
· φ(

k − 1

d
)

)

≤
d+1∑
k=0

λk(1− λ)d−k+1

(
d+ 1

k

)
φ(

k

d+ 1
)

= c̄(d+ 1, λ).

In the second to last step we applied Jensen’s inequality, thanks to the concavity of
φ.

The previous proposition roughly says that when agents exhibit decreasing marginal
return, those who have a large number of friends are more likely to adopt the recom-
mendation. To get the intuition, consider the case where the agent only cares about
whether there is a friend who has adopted the product, but does not care at all about
how many have adopted. We note that this is an extreme form of decreasing marginal
return. To satisfy IC in this context, the designer has to minimize l0, the probability
that he recommends when no friend has adopted, under the privacy constraints. It is
clear that a larger d makes this task easier, because the privacy constraint is less re-
strictive on l0. Also if φ is convex, then a similar proof shows c̄ decreases in d. These
results combined give another proof of Corollary 5.2.

The next proposition confirms that the optimal recommendation system uses a “cut-
off strategy” and gives an explicit formula for the cutoff.

PROPOSITION 5.4. Under the same assumptions as in Proposition 5.1, node v’s in-
terim (knowing θv = 0 but nothing else) expected utility given that he will adopt the
social planner’s recommendation is

πv =

d∑
k=0

(
φ(
k

d
)− c

)
pdk · lk. (12)

Consider the optimization problem maxπv subject to the constraints: 0 ≤ lk ≤ 1, lk+1 ≤
exp(ε) · lk, and exp(−ε) · (1− lk) ≤ 1− lk+1.

The optimization problem has the following cutoff type solution:
i) For c ≤ c̄(d, ε, p), there exists integer k̄ between 0 and d such that πv is maximized
when

lk =

{
exp(ε)
exp(ε)+1 · exp(ε(k − k̄)), if k ≤ k̄;

1− 1
exp(ε)+1 · exp(ε(k̄ − k)), if k > k̄.

k̄(d, ε, p, c) is such that:
d∑
k=0

(φ(
k

d
)− c)pdk · exp(−|k − k̄|ε) ≥ 0 >

d∑
k=0

(φ(
k

d
)− c)pdk · exp(−|k − k̄ + 1|ε). (13)

ii) For c > c̄(d, ε, p), πv can never be positive. Thus lk = 0,∀k is optimal.
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As in the proof of Proposition 5.1, thanks to Non-Trivial Cost we need not consider
the “other side” of IC in optimizing (12). If Non-Trivial Cost is violated, then the op-
timal system is either the one characterized by this Proposition or the system that
always recommends to every agent.

PROOF. We assume that the maximum value is strictly positive and derive prop-
erties of the maximizing solution {lk}. Because φ is strictly increasing, there exists a
unique smallest integer k∗ such that φ(k

∗

d ) ≥ c, and the multiplicative factor φ(kd ) − c
is non-negative precisely when k ≥ k∗. In order to maximize πv, lk has be to be as large
as possible for k > k∗ and as small as possible for k < k∗.

We show that the sequence {lk} is weakly increasing. Suppose not, then lk+1 < lk for
some k. If k < k∗, then we can make l0, l1, . . . , lk all slightly smaller to increase π(v)
while maintaining the constraints. If k ≥ k∗, then similarly we can make lk+1, . . . , ln
all slightly larger without violating the constraints. The resulting π(v) is again higher.
Either way we get a contradiction.

We label the constraints of the optimization problem as:

lk+1 ≤ exp(ε) · lk (DP1’)

1− lk+1 ≥ exp(−ε) · (1− lk). (DP2’)

We note that if lk+1 ≤ exp(ε)
exp(ε)+1 then DP1’ implies DP2’. The implication goes the

other way if this inequality is reversed.

Because we would like to make lk as large as possible for k > k∗ and as small as
possible for k < k∗, at each k one of the DP constraints must bind. Suppose first that
l0 >

exp(ε)
exp(ε)+1 . Then DP2’ binds for each k, and we can write lk as a linear function of l0.

π(v) is also linear, so it is maximized when l0 = 1 or l0 = exp(ε)
exp(ε)+1 . The former cannot

happen because we assumed that full recommendation does not satisfy IC. Hence it is
W.L.O.G. to assume l0 ≤ exp(ε)

exp(ε)+1 .

Now define k̄ ≥ 0 to be the largest k such that lk ≤ exp(ε)
exp(ε)+1 . It follows from previous

observations that DP1’ binds if k < k̄ and DP2’ binds otherwise. So

lk =

{
exp(ε(k − k̄)) · lk̄, if k ≤ k̄;

1− exp(ε(k̄ − k)) · (1− lk̄), if k > k̄.

This implies π(v) is linear in lk̄. By the definition of k̄, lk̄ can take value on the inter-
val [ 1

exp(ε)+1 ,
exp(ε)
exp(ε)+1 ]. Therefore π(v) is maximized when lk̄ = exp(ε)

exp(ε)+1 or 1
exp(ε)+1 . In

the former case the characterization of optimal recommendation follows directly. In the
latter case we note that k̄ < n, for otherwise DP2’ never binds and we can multiply the
sequence {lk} by a constant t > 1 to achieve a higher profit without violating the con-
straints. Moreover lk̄+1 = exp(ε)

exp(ε)+1 , and the characterization follows by taking k̄+1 as k̄.

Hence we have shown that the constrained optimization problem is maximized by
a cutoff-type solution whenever the maximum value is positive. It remains to find
the optimal k̄. The characterization (13) is immediately obtained by considering the
alternatives k̄ ± 1 and using the fact that π(v) could not be higher. Also note that
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f(k̄) :=
d∑
k=0

(φ(
k

d
)− c)pdk · exp(−|k − k̄|ε) (14)

satisfies

f(k̄) = exp(−ε)f(k̄ − 1) + (exp(ε)− exp(−ε)) ·
d∑

k=k̄

(φ(
k

d
)− c)pdk · exp(−|k − k̄ + 1|ε).

Suppose f(k̄−1) ≥ 0. If k̄−1 ≥ k∗, then
∑d
k=k̄(φ(kd )− c)pdk · exp(−|k− k̄+ 1|ε) is trivially

positive. Otherwise

d∑
k=k̄

(φ(
k

d
)− c)pdk · exp(−|k − k̄ + 1|ε) = f(k̄ − 1)−

k̄−1∑
k=0̄

(φ(
k

d
)− c)pdk · exp(−|k − k̄ + 1|ε)

is again positive. It follows that whenever f(k̄ − 1) ≥ 0, f(k̄) > 0, i.e. f(·) is first
negative then positive. From this we conclude that the k̄ determined from (13) is
unique, and the associated sequence {lk} maximizes π(v).

Finally, a necessary condition for the existence of k̄ is that f(d) ≥ 0, or
d∑
k=0

(φ(
k

d
)− c)pdk · exp(εk) ≥ 0.

This implies c ≤ c̄(d, ε, p), completing the proof of this Proposition as well as the neces-
sity part of Proposition 5.1.

Although Proposition 5.4 is stated in terms of lk, it is straightforward to recover a set
of primitive recommendation probabilities lv(Θ) that maximize expected utility subject
to IC and DP : just let lv(Θ) = lk for k = θv1 + · · ·+ θvd .

The intuition for this result is that in order to make an effective recommendation
while preserving privacy, the designer should recommend aggressively when there is
clear benefit to the agent, i.e. when k > k̄. Above this threshold, designer recommends
as frequently as possible without violating DP2. Below this threshold the designer
fully exploits the limits of DP1 to minimize its impact on the agent’s incentives.

PROPOSITION 5.5. k̄(d, ε, p, c) as defined in (13) is decreasing in p and increasing in
c. Moreover if φ is twice differentiable with φ′ > 0 and |φ′′| < M < ∞ on (0,1), then for
fixed ε, p and c < φ( p·exp(ε)

1−p+p·exp(ε) ), we have k̄(d) = φ−1(c) · d+O(1).

PROOF. Recall that k̄ was characterized in (13). Using the definition in (14), we see
that k̄ is the smallest m such that f(m) ≥ 0, or

d∑
k=0

(φ(
k

d
)− c)

(
d

k

)
(

p

1− p
)k−k

∗
· exp(−|k −m|ε) ≥ 0.

Increasing p or decreasing c makes the LHS bigger, so k̄ is decreasing in p and
increasing in c.

Now we turn to consider the asymptotic behavior of k̄. From the assumption that c <
φ(λ) and Proposition 5.3, we know that c < c̄(d, ε, p) eventually. Therefore k̄(d, ε, p, c) is
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finite for all large d. Furthermore, simple algebra allows us to write f(m) as a positive
constant times
m∑
k=0

(φ(
k

d
)− c)

(
d

k

)(
p · exp(ε)

1− p

)k−k∗
+

n∑
k=m+1

(φ(
k

d
)− c)

(
d

k

)(
p

(1− p) · exp(ε)

)k−k∗
. (15)

Call the first summand in (15) S(m) and the second T (m). We claim that m = k∗ +
Ω(1) ensures S(m) ≥ 0 (and T (m) ≥ 0 trivially). Note that S(m) ≥ 0 can be rewritten
as:

k∗−1∑
k=0

(c− φ(
k

d
))

(
d
k

)(
d
k∗

) (p · exp(ε)
1− p

)k−k∗
≤

m∑
k=k∗

(φ(
k

d
)− c)

(
d
k

)(
d
k∗

) (p · exp(ε)
1− p

)k−k∗
. (16)

When k ≤ k∗, the ratio (d
k)

( d
k∗)

= k∗···(k+1)
(d−k∗+1)···(d−k+1) ≤ ( k∗

d−k∗+1 )k
∗−k. Since k∗ = φ−1(c) · d+

O(1) and c < φ(λ), we find that for some δ > 0,(
d
k

)(
d
k∗

) (p · exp(ε)
1− p

)k−k∗
≤ (1− δ)k

∗−k,∀k ≤ k∗,

and similarly (
d
k

)(
d
k∗

) (p · exp(ε)
1− p

)k−k∗
≥ (1 + δ)k−k

∗
,∀k = k∗ +O(1).

It follows that the LHS of (16) is at most
∑k∗−1
k=0 (φ(k

∗

d ) − φ(kd ))(1 − δ)k
∗−k ≤

||φ′||
d

∑k∗−1
k=0 (k∗ − k)(1 − δ)k∗−k by the mean value theorem. Since |φ′′| ≤ M , φ′ must be

bounded. Furthermore the quasi-geometric sum converges absolutely. Thus the LHS
of (16) is O( 1

d ).

On the other hand, a crude lower bound for the RHS is (m−k∗)
(
φ(k

∗+1
d )− φ(k

∗

d )
)
≥

m−k∗
2d φ′(φ−1(c)). The inequality follows again from the mean value theorem, or more

rigorously from a second order Taylor expansion of φ(·) at φ−1(c). As φ′ > 0 we con-
clude that m−k∗ = Ω(1) is sufficient for (16) to hold. This proves k̄(d, ε, p, c) ≤ k∗+O(1).

To establish k̄(d, ε, p, c) ≥ k∗ − O(1), it suffices to show that m = k∗ − Ω(1) implies
T (m) ≤ 0 (and S(m) < trivially). From the Non-Trivial Cost assumption and using
similar techniques as in Proposition 5.3, we have that c ≥ φ(p). From this we can
approximate T (m) by a geometric sum and prove it is non-negative. The calculations
are similar to what we have done but tedious, so we omit them here.
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