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Introduction

I Motivation: rising popularity of friendship-based
recommendation systems

I Many platforms include a social networking feature. Platforms
use friendship in these networks as a tool towards better
product recommendation.

I Examples
I Netflix Social recommends TV shows that friends have marked

as favorites.
I Last.fm’s music recommendation takes into account the

musical taste of friends.
I Facebook’s “People You May Know” feature suggests new

“products” (new Facebook friends) based on the friends lists of
current friends



Social recommendation systems and privacy

I An example: some users may view their Facebook friends list
as private information. However, the “People You May Know”
feature gives a user recommendations (regarding new
friendships) using the private data of others (friends lists of
her current friends).

I A further problem: users may have prior belief about the
quality of product, not compelled to follow website’s
recommendation

I Roughly speaking, the problem is to design an optimal
recommendation system subject to the constraints of (i)
privacy; (ii) incentive compatibility. Later, will see the tension
between these two constraints.



Outline for rest of this talk

I A model to capture the privacy and incentive compatibility
constraints

I adoption of a network good
I myopic agents

I A toy example to highlight the geometry of the constraints
I Feasibility and optimality results



Basic model setup

“Agents living on a graph face the introduction of a new network
good.”

Why network good?

Let G = (V ,E ) denote a graph where:

I V = {v1, ..., vn} represents agents
I Edges represent a symmetric relationship along which

externality effect of the network good takes form.
I Agents have incomplete information regarding value of the

good, since adoption status of other agents in the network are
private information.



Stage I: initial adoption

Each node independently adopts the good with probability p.
Denote adoption status of node vi as θi ∈ {0, 1}, private to vi .
Summarize the Stage I adoption state of the network as
θ = (θ1, ...., θn) ∈ Θ.

The ideas behind Stage I:

I Models a decentralized adoption process before intervention of
recommendation system

I From technical perspective, Stage I gives rise to a common
prior



Stage II: recommendation
Recommendation system sends a recommendation to a subset of
Stage I non-adopters. Each non-adopter then decides whether to
adopt or not. Non-adopter vi gets payoff

φ

(∑
w∈N(vi ) θw

d(vi )

)
− c

if they adopt in Stage II, 0 otherwise, where

I N(vi ) is the set of neighbors of vi
I d(vi ) is the degree of vi
I c > 0 is a parameter representing cost of adoption
I φ is a continuous, increasing function normalized to φ(0) = 0,
φ(1) = 1.

I special case: φ = id.

Remark: agents are myopic.



The recommendation system
The recommendation system is a stochastic function A : Θ→ Θ
which the designer announces before Stage I.

I The function maps a profile of Stage I adoption status to a
profile of recommendations.

I For each i with θi = 0, Ai (θ) = 1 means A sends a
recommendation to i , while Ai (θ) = 0 means A does not.

Upon receiving or not receiving a recommendation, agent vi with
θi = 0 computes conditional expected payoff from adopting the
good:

πi (Ai ) := Eθ

[
φ

(∑
w∈N(vi ) θw

d(vi )

)
− c

∣∣∣∣ Ai
]

and adopts if and only if πi ≥ 0.

The designer faces a constrained optimization problem.



Social welfare (SW) objective

Eθ

EA(θ)

∑
vi∈V

1{θi =0} · 1{πi≥0} ·
(
φ

(∑
w∈N(vi ) θw

d(vi )

)
− c

)
For every realization of A(θ), each agent with θi = 0 either
receives a recommendation or receives no recommendation.

Based on this signal, such agents compute conditional expected
payoff to adoption and uses the rule πi ≥ 0 to make adoption
decision.



Incentive compatibility (IC) constraint

Incentive compatibility (IC) says each agent must find it beneficial
to do as recommended1.


Eθ,A

(
φ

(∑
w∈N(vi ) θw

d(vi )

)
− c

∣∣∣∣ Ai (θ) = 1
)
≥ 0

Eθ,A
(
φ

(∑
w∈N(vi ) θw

d(vi )

)
− c

∣∣∣∣ Ai (θ) = 0
)
≤ 0

(IC)

1Some authors like Myerson also call this the “obedience constraint”.



Differential privacy (DP) constraint

ε-differential privacy (DP) requires that A is not too sensitive to
small changes in θ.

In the context of database privacy, DP was originally proposed by
Dwork:

Definition
Write D for the set of possible states of the database. Then the
S-valued randomized algorithm A : D→ S is said to be
ε-differentially private if for every S ⊆ S and every D,D′ ∈ D
where D′ differs from D in only a single row,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S]



Differential privacy (DP) constraint

In the context of our problem, for any two profiles of Stage I
adoption states θ, θ′ differing in only one component and for
χ ∈ {0, 1},

Pr
[
Ai (θ) = χ

]
≤ exp(ε) · Pr

[
Ai (θ′) = χ

]
(DP)

Here, Θ plays the role of possible states of database.

Technically, this is a relaxation of the usual DP definition. The
“output” of A is really a vector of recommendations. However, we
are only asking that recommendation given to vi is not too
sensitive to the types of vj for j 6= i . This relaxation can be
motivated by a no-collusion assumption.



Summary of designer’s problem

Call a stochastic function A feasible if it satisfies both IC and DP.

The designer’s problem is to pick a feasible A to maximize SW.

The key feature of the model is the tension between IC and DP:

I DP says recommendations must not be too informative of the
adoption status of neighbors

I However, IC requires the recommendations to be sufficiently
informative

I In two extreme cases:
I Uniformly random recommendations satisfy DP, but violates

IC if c is large
I Socially optimal recommendations satisfy IC, but violates DP

if ε is small
I the classic tension between preserving data privacy and

producing useful outputs



A toy example
Consider a simple network with only two vertices connected with
an edge. Set parameters:

I DP parameter ε = ln(2)
I probability of Stage I adoption p = 0.2
I cost of adoption c = 0.25
I utility functional form φ = id

A recommendation system in this toy example is characterized by
l0, l1 ∈ [0, 1].

I l0 is probability of receiving recommendation when neighbor is
a Stage I non-adopter

I l1 is probability of receiving recommendation when neighbor is
a Stage I adopter

I Think of the set of all recommendation systems as
[0, 1]× [0, 1]



A toy example
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A toy example
In the case where DP and IC intersect at points other than (0, 0),
the problem of the designer is to maximize SW over this
intersection.
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General results

Assume throughout cost of adoption is not too small relative to its
benefits, else there is no role for a recommendation system.

c ≥
d∑

k=0
φ(d/k) ·

(
d
k

)
· pk(1− p)d−k (Non-Trivial Cost)

With this one additional assumption, we derive a feasibility
condition for the constrained optimization problem and explicitly
characterize the optimal recommendation system.



Feasibility condition

Proposition
Fix a Stage I non-adopter agent v and write d := d(v). There exists a
non-trivial recommendation system A satisfying IC and DP for v if and
only if the cost of adoption satisfies c ≤ c̄(d , ε, p), where:

c̄(d , ε, p) := 1
(1− p + p · exp(ε))d

d∑
k=0

φ

(k
d

)
·
(
d
k

)
(p·exp(ε))k(1−p)d−k

To get a feasibility condition for the entire network, take min of
c̄(d , ε, p) across all vertices.
Remarkably, in the special case where φ = id, the feasibility
condition independent of d , making the result topology-free.

Corollary

If φ = id, then c̄(d , ε, p) = exp(ε)·p
1−p+exp(ε)·p



The optimal recommendation system

Proposition

Fix a Stage I non-adopter agent v and suppose c ≤ c̄(d , ε, p).
There exists integer k̄ with 0 ≤ k̄ ≤ d such that v’s interim utility
is maximized when:

lk =


exp(ε)

exp(ε)+1 · exp(ε · (k − k̄)) if k ≤ k̄
1− 1

exp(ε)+1 · exp(ε · (k̄ − k)) if k > k̄

To interpret, the optimal rec. system uses a cutoff k̄, dependent on
d , ε, p, c, so that:

I Rec is sent with probability exp(ε)
exp(ε)+1 to an agent with k̄ adopter

neighbors
I Rec probability decreases at rate exp(ε) for agents with fewer than

k̄ adopter neighbors
I Non-rec probability decreases at rate exp(ε) for agents with more

than k̄ adopter neighbors



Summary

I Model: A network good adoption model that captures the
tension between incentive compatibility and privacy

I Results:
I Feasibility condition: c ≤ c̄(d , ε, p).
I Optimal recommendation system: There is some cutoff k̄

associated with exp(ε)
exp(ε)+1 probability of recommendation.

Designer fully exploits privacy constraint around this cutoff.



The End

Thank you!


