Private Private Information

Kevin He Fedor Sandomirskiy Omer Tamuz

April 28, 2022 Virtual Seminars in Economic Theory (VSET)

A Familiar Setup: Private Information about State

- A finite set of agents $\{1, ..., n\}$
- A binary state of nature $\omega \in \{\ell, h\}$
- A common prior probability $p \in (0,1)$ for event $\{\omega = h\}$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
- A joint distribution ℙ over (ω, s₁, ..., s_n) defines the information structure

Private Information May Not Be Private

- Some examples of private information structures:
 - Public signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - ► Conditionally independent signals given ω, (s₁,..., s_n) are drawn independently across agents
- Are agents' information in these examples really private?
- Clearly, public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega = h] = 1/2$
 - Binary signals with $\mathbb{P}[s_i = \omega \mid \omega] = 3/4$
 - Before observing s_1 , P1 assigns belief 1/2 to $\{s_2 = h\}$
 - After learning $s_1 = h$, P1 now assigns belief 5/8 to $\{s_2 = h\}$
 - s_1 contains info about s_2 , so P2's info not fully private after all

Private Private Information

Definition

A **private private information structure** is one where the signals $(s_1, ..., s_n)$ are independent.

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Signals do not update agents' higher-order posterior beliefs: *i* learns nothing about *j*'s belief from *s_i*
- Is it possible for everyone to have **informative** private private signals?
 - May seem paradoxical at first: s₁ informative about ω, ω correlated with s₂, yet P1 learns nothing about s₂?
 - ► It is possible!
 - Tension between informativeness and privacy: impossible for everyone to have **perfectly** informative private private signals
 - We focus on this tension and study how informative private private signals can be

Application of Informative Private Private Signals

Fairness, equity, and privacy in rating design:

- State $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- + \textit{s}_1 is a private or legally protected trait, correlated with ω
- Rating agency knows ω and $\textit{s}_{1},$ bank knows neither
- Rating agency gives bank a signal s_2 about the borrower
- Regulations / privacy laws may require s₂ to be independent of s₁ (guarantees a fairness concept called **demographic parity**)
- So, (ω, s_1, s_2) is a private private info structure
- How informative can s₂ be?

Outline

- 1. Canonical representation of private private info structures
- 2. Pareto optimal private private info structures
- 3. Application: most informative signal under the constraint of not revealing a protected trait

Example 1 **S**2 1 S_1 0

- Suppose $\mathbb{P}[\omega = h] = 1/2$
- When $\omega = h$, choose (s_1, s_2) uniformly from blue set
- When $\omega = \ell$, choose (s_1, s_2) uniformly from white set
- s_1, s_2 independent, each $s_i \sim \text{Unif}[0, 1]$
- $\{\omega = h\}$ is the event that $s_1 + s_2 \ge 1$
- $\mathbb{P}[\omega = h \mid s_1 = 0.9]$ fraction of vertical slice at 0.9 that is blue
- In fact, each s_i induces posterior belief s_i about state

Example 2

- Same idea: ℙ[ω = h] = 1/2, draw (s₁, s₂) uniformly from blue or white set depending on state
- $s_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}[0, 1]$, but s_i no longer induces belief s_i
- Equivalent to a binary signal that induces beliefs 1/4 or 3/4

Example 3

• And here is an example that induces beliefs 1/3 or 2/3

Canonical Representation of Private Private Signals

A general method to construct private private info structures:

- Suppose $\mathbb{P}[\omega = h] = p$ and there are n agents
- Fix any subset of $[0,1]^n$ with measure p, call it A
- When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
- When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
- (Equivalently, $s_i \overset{\text{i.i.d.}}{\sim} \text{Unif}[0,1], \omega$ given by whether $\vec{s} \in A$)

Call this the **canonical** info structure associated with A — as we vary A, get different private private info structures

Is this just a large family of examples, or is this "everything"?

Canonical Representation of Private Private Signals

Proposition

For every private private info structure, there is an equivalent canonical info structure — a measurable $A \subseteq [0,1]^n$ that induces the same belief distribution for each agent as the given structure.

Proof idea (for n = 2):

- Can always assume $s_i \sim \text{Unif}[0, 1]$ by relabeling signals
- Key restriction: state determined by signal realizations (s_1, s_2)
- Given any private private info structure (ω, s_1, s_2) , let $f(s_1, s_2) := \mathbb{P}[\omega = h \mid s_1, s_2]$
- Consider (ω, s_1, s_2, s_3) where $s_3 \sim \text{Unif}[0, 1]$, $\omega = h$ iff $s_3 \leq f(s_1, s_2)$, so s_3 resolves uncertainty left by (s_1, s_2)
- Construct a canonical private private info structure by splitting the realization of s₃ among P1 and P2 via **secret sharing**

Pareto Comparisons of Informativeness

Ex. 2: Belief **1/4** or **3/4**

Ex. 3: Belief 1/3 or 2/3

- Each agent's info in Example 2 strictly Blackwell dominates her info in Example 3
- Suppose we want to give out as much info as possible. What are the **most informative** private private info structures?

Definition

For I, I' private private info structures, $I \succeq I'$ if each agent's info about state in I Blackwell dominates her info about state in I'. A private private info structure is **Pareto optimal** if it is \succeq -maximal (cannot give any agent more info without violating privacy).

Tomography and Sets of Uniqueness

• **Tomography** is an imaging technique that investigates the shape of an object by running x-ray through it

 Produces a lower-dimensional projection of the object by looking at how much x-ray is absorbed at different points

Tomography and Sets of Uniqueness

• Typically, must run x-ray from many different angles to get a good understanding of the object's geometry

Definition

 $A \subseteq [0,1]^n$ is a **set of uniqueness** if its *n* projections onto the *n* coordinate axes suffice to reconstruct *A*. (That is, if *A'* matches *A* on all *n* coordinate-axes projections, then A' = A a.e. in $[0,1]^n$.)

Pareto Optimality and Sets of Uniqueness

Theorem

The private private info structure associated with $A \subseteq [0, 1]^n$ is Pareto optimal if and only if A is a set of uniqueness.

- An unexpected connection between Pareto optimality of private private info structures and a concept from tomography
- Will discuss its proof later (if there's time at the end)
- As an application, recall Example 2 strictly Pareto dominates Example 3. But is Example 2 itself Pareto optimal?
- Question equivalent to: is the blue area a set of uniqueness?

A Puzzle!

Problem for a newspaper puzzle column: is there another coloring of the 4x4 grid that preserves all column-wise and row-wise counts of colored squares?

Existing Results about Sets of Uniqueness

- By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal
- Can **disprove** Pareto optimality by finding another set with same marginal projections. How to **prove** Pareto optimality?
- Use results about sets of uniqueness from tomography
- $A \subseteq [0,1]^n$ is upward closed if $\vec{x} \in A \Rightarrow \vec{x}' \in A$ for all $\vec{x}' \ge \vec{x}$

• $A \subseteq [0,1]^n$ is **additive** if there are bounded, non-decreasing $h_i : [0,1] \to \mathbb{R}$ s.t.

$$A = \{ \vec{x} \in [0,1]^n : \sum_{i=1}^n h_i(x_i) \ge 0 \}$$

• Additive implies upward closed, equivalent if n = 2

Existing Results about Sets of Uniqueness

Theorem (Fishburn, Lagarias, Reeds, and Shepp (1990))

- For n = 2, every upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For every n, every additive set is a set of uniqueness.

- Blue set in Example 1 is upward closed, so its info structure is Pareto optimal (apply Fishburn et al.'s theorem, then ours)
- For any number of agents n, can use additive subsets of [0, 1]ⁿ to generate Pareto optimal private private signals
- For two agents, upward closed subsets give **all** possible belief distributions in Pareto optimal private private info structures

Conjugates and Pareto Optimality for n = 2

- As a corollary, get simple test of Pareto optimality when n = 2
- Let F be the cdf of a distribution on [0, 1] with mean p
- Denote $\hat{F}(x) = 1 F^{-1}(1-x)$
- Then \hat{F} is also the cdf of a distribution on [0, 1] with mean p, obtained by reflecting F around the anti-diagonal

• Call F and \hat{F} conjugates

Corollary

For n = 2, a private private info structure is Pareto optimal if and only if the belief distributions induced by s_1 and s_2 are conjugates.

Application: Optimal Signal Given a Protected Trait

- ω a binary state of interest
- s₁ a sensitive or protected trait
- Fix the joint distribution of (ω, s_1)
- Want to generate a signal s_2 that is
 - as informative as possible about ω
 - but **independent** of s_1
- Equivalently: find a Pareto optimal private private info structure ℙ on (ω, s₁, s₂) with the given (ω, s₁) marginal

Proposition

There is a Pareto optimal private private info structure on (ω, s_1, s_2) with the given (ω, s_1) marginal, and it is unique up to equivalence. Belief distributions induced by s_1 and s_2 are conjugates in this structure.

Informativeness of Trait and Optimal Signal

- $\omega \in \{\ell,h\}$ fit for job, $s_1 \in \{y,o\}$ binary measure of age
- $\mathbb{P}[\omega = h] = \mathbb{P}[s_1 = o] = 1/2$
- Age is correlated with fit

$$\mathbb{P}[\omega = h \mid s_1 = o] = 1/2 + r = \mathbb{P}[\omega = \ell \mid s_1 = y]$$

for some $0 \le r \le 1/2$

• Here is the optimal signal that preserves privacy (why?)

- It has the correct marginal distribution on (ω, s_1) :
 - $\mathbb{P}[\omega = h] = 1/2$ (half of the square is blue)

 $\blacktriangleright \mathbb{P}[\omega = h \mid s_1 = o] = \mathbb{P}[\omega = \ell \mid s_1 = y] = 1/2 + r$

 Blue area is upward closed ⇒ associated with a Pareto optimal private private info structure (Fishburn et al. + our theorem)

Informativeness of Trait and Optimal Signal

- Read off the solution from this picture
- Most informative signal that does not reveal age is trinary

•
$$S_2 = \{\ell, \emptyset, h\}$$

- $s_2 = \emptyset$ is uninformative about fit
- ▶ $s_2 \in \{\ell, h\}$ perfectly reveals the fit
- ▶ P[s₂ = Ø] = 2r: if age more correlated with fit, then less info can be sent about job fit without violating privacy

Connecting Pareto Optimality with Tomography

Theorem

The private private info structure associated with $A \subseteq [0, 1]^n$ is Pareto optimal if and only if A is a set of uniqueness.

Key idea: can use two sets A, A' with same marginals to build a strictly Pareto dominating private private info structure

The "Convex Combination" Coloring

- Each square can now be colored, blank, or shaded
- Shaded square = "half of a colored square"
- Draw $s_1, s_2 \stackrel{\text{i.i.d.}}{\sim} \text{Unif}[0, 1]$. If (s_1, s_2) in shaded region, toss an independent fair coin s_3 to determine state ω
- This structure generates the same distribution of posteriors
 - Because "convex combination" between the two colorings with the same marginals preserves the marginals

Converse: Set of Uniqueness \Rightarrow Pareto Optimal

- $A \subseteq [0,1]^n$ is a set of uniqueness
- $I = \text{associated private private info structure, } s_i \in S_i = [0, 1]$
- By way of contradiction, suppose some private private info structure I^{dom} with signals T_i strictly Pareto dominates I
- By Blackwell's theorem, find garblings $\varphi_i : T_i \to \Delta([0, 1])$ s.t. $\varphi_i(t_i)$ gives the same posterior distribution as s_i
- Consider the info structure I^{garb} where (t₁,..., t_n) generated as in I^{dom}, then agents observe (φ₁(t₁),...,φ_n(t_n))
- I^{garb} is private private and equivalent to I, and WLOG can reparametrize signals so that signals in I^{garb} are uniform on [0, 1] and each signal x_i gives the same posterior belief as in I
- Since at least one φ_i strictly garbles, for positive measure of \vec{x} , $\mathbb{P}[\omega = h \mid (\varphi_1(t_1), ..., \varphi_n(t_n)) = (x_1, ..., x_n)] \notin \{0, 1\}$

Converse: Set of Uniqueness \Rightarrow Pareto Optimal

• Define $f:[0,1]^n \rightarrow [0,1]$, with

 $f(x_1,...,x_n) := \mathbb{P}[\omega = h \mid (\varphi_1(t_1),...,\varphi_n(t_n)) = (x_1,...,x_n)]$

- Note f has the same projections on coordinate axes as 1_A
 - Almost contradicts A being a set of uniqueness, but f is not indicator on a set
- Gutmann, Kemperman, Reeds, and Shepp (1991): Let F = set of functions [0,1]ⁿ → [0,1] whose coordinate axes projections agree with 1_A. Indicator functions = extreme points of F
- Since $f \in \mathbb{F}$ is not an extreme point $\Rightarrow \mathbb{F}$ has non-empty relative interior \Rightarrow there are at least 2 distinct extreme points $\mathbf{1}_{V'}, \mathbf{1}_{V''} \in \mathbb{F}$
- At least one of V' or V'' is a set with the same marginals as A but does not equal to A a.e., contradiction

Not a Set of Uniqueness \Rightarrow Strictly Dominated

• Toss the fair coin ahead of time and tell P2 how it lands

• Let
$$s'_1 = s_1, s'_2 = (s_2, s_3)$$

- Signals of P1 and P2 still independent, because the coin is independent of s₁, s₂ — a private private info structure
- (*s*₂, *s*₃) strictly Blackwell dominates *s*₂ because the coin affects the state with positive probability (shaded region)

Uses the hypothesis that A is not a set of uniqueness

Summary

- **Private private information structures**: signals of different agents ($s_1, s_2, ..., s_n$) are (unconditionally) independent
- Can **represent** all such info structures as subsets of $[0, 1]^n$ (up to equivalence)
- Pareto optimal private private info structures associated with sets of uniqueness: subsets that are determined by their projections on coordinate axes
- For *n* = 2, set *A* associated with Pareto optimal private private info structure iff *A* is **upward closed** (up to relabeling)
 - So, given a pre-existing signal s₁, most informative s₂ that is independent of s₁ induces its conjugate belief distribution
- For any *n*, **additive** sets associated with Pareto optimal private private structures

(not Pareto optimal)

(Pareto optimal)