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We describe results from Dasaratha and He [DH21a] and Dasaratha and He [DH20] about how
network structure influences social learning outcomes. These papers share a tractable sequential
model that lets us compare learning dynamics across networks. With Bayesian agents, incomplete
networks can generate informational confounding that makes learning arbitrarily inefficient. With
naive agents, related forces can lead to mislearning.
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1. INTRODUCTION

Information about a decision-relevant state of nature is often dispersed among a
group of agents. When people try to evaluate a new scientific theory or decide which
of two consumer products is better, each individual’s personal experience provides
a small amount of information. While it is often unrealistic for a central institution
to elicit everyone’s private information and then broadcast a synthesized predic-
tion about the state, society may nevertheless aggregate different people’s signals
through a process of decentralized social learning. In social learning, people make
inferences about the state from their private information and their social obser-
vations — other people’s opinions on the new theory or others’ product adoption
choices provide information about the state. More private signals gradually become
incorporated into the social consensus as agents act in turn.

In such social-learning settings, interpersonal ties often matter for the flow of
information. Typically, people do not observe the choices of all predecessors who
have faced the same decision problem in the past, but only those of their “neighbors”
in a social network. These neighbors traditionally include the family members,
friends, and colleagues with whom one regularly interacts on a face-to-face basis,
but increasingly also include one’s virtual neighbors on social-media platforms. How
do structural properties of the observation network affect social learning, and how
do changes to the network (e.g., due to developments in communication technology)
improve or hinder learning?

As an example of how the network can matter for learning, many realistic network
structures obstruct learning through a confounding mechanism. Suppose an agent
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observes several neighbors, but not some earlier predecessors who influenced these
neighbors. Then the agent cannot fully separate the neighbors’ private information
from their (potentially common) social information. This network-generated con-
founding can seriously harm learning even for fully rational agents, and leads to
even worse consequences for naive agents who rely on behavioral heuristics.

To analyze confounding and other effects of the social network, we describe a
tractable social-learning model designed to compare social-learning dynamics across
networks. We start with the standard sequential learning environment [Ban92;
BHW92|, and then equip agents with rich actions that fully convey beliefs and
Gaussian private signals. These assumptions let us focus on obstructions to learn-
ing that arise from the observation network (as opposed to obstructions due to
coarseness of the action space or signal space, e.g., Rosenberg and Vieille [RV19],
Harel, Mossel, Strack, and Tamuz [HMST21]).

This model lets us analyze Bayesian learning [DH21a] and naive learning [DH20],
and we will discuss results under both regimes. Bayesian agents will learn the true
state on all “reasonable” network structures (as in Acemoglu, Dahleh, Lobel, and
Ozdaglar [ADLO11]), but we show this learning can be very inefficient. Naive
agents will often herd on the incorrect state, and we compute the probability of
such mistaken herds. In both cases, we move beyond binary criteria (e.g., do agents
eventually learn the true state?) and define richer measures to capture learning
outcomes. We compare these measures as we vary features of the social network,
delivering a detailed comparison of how changes in the network affect learning.

2. MODEL

Consider a sequence of agents ¢ = 1,2, ... who act in turn, learning about a common
binary state w € {0,1}. The two states are equally likely ex-ante. Each agent
receives an i.i.d. conditionally Gaussian private signal s;, with the signal drawn
from the normal distribution N (1,0?) when w = 1 and N(—1,0%) when w = 0.
Agent i also observes the actions a; € [0, 1] of her neighbors j in the neighborhood
N(i) €{1,2,...,i— 1}. The neighborhoods, which are common knowledge, define
an observation network. Agents choose actions a; to maximize the expectation of
their utility u;(a;,w) = —(a; — w)?, so that

a; = E[w | agent i’s beliefs].

This model that we work with is the standard sequential learning model with
two notable assumptions: (1) actions are rich enough to fully reflect beliefs, and
(2) private signals are Gaussian.

3. BAYESIAN SOCIAL LEARNING
3.1 General Results

This section follows Dasaratha and He [DH21la] and describes our results with
Bayesian agents. We begin with several general results that facilitate calculations
in the model. First, actions are log-linear — that is, the log-likelihood log(1%:-)
is a linear combination of agent ¢’s private signal log-likelihood and her neighbors’

log-likelihoods:
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for some coefficients [;;.

Second, we can assign a signal-counting interpretation to the accuracy of every
agent’s action. If agent ¢’s only information is n € N independent signals, then her
action has the conditional distribution log( 12“) ~N (:I:n- %, n- %), where the
sign depends on the state w. We extend this fact to define a measure of accuracy
by interpolating between integer values of n:

Definition 3.1. Social learning aggregates r € R, signals by agent i if agent
i’s log-action satisfies log(1%-) ~ N (+r- Z,r- 5).

1—a; o2 o2

When agents use arbitrary log-linear strategies, their log-actions may not satisfy
the functional-form restriction in the above definition for any r (even though they
will be conditionally normally distributed). But the next proposition shows the
functional-form restriction is always satisfied for Bayesian agents.

PROPOSITION 3.2. There exist (r;);>1 so that for Bayesian agents, social learn-
ing aggregates r; signals by agent i. These (r;);>1 depend on the network, but not
2
on o°.

This result says we can always quantify a rational agent’s accuracy in units of
independent private signals. The number 7; is a sufficient statistic for agent ’s
accuracy, and we can compare learning across networks by comparing their r;’s.

Agents learn the state completely in the long-run if and only if r; — oco. It
is straightforward to show that there is long-run learning if and only if the mild
“expanding neighborhoods” condition from Acemoglu, Dahleh, Lobel, and Ozdaglar
[ADLO11] is satisfied. This implies that long-run learning is not a very useful
criterion for comparing Bayesian learning across networks, and we will instead
focus on how efficiently agents learn.

Definition 3.3. The aggregative efficiency of the network is lim; o (7;/7).

Aggregative efficiency measures the fraction of available signals that get incorpo-
rated into people’s behavior on a certain network. We now show that even networks
that enable long-run learning may have arbitrarily low aggregative efficiency.

3.2 Generations Networks

We illustrate the effect of confounding in a simple class of social networks where
agents eventually learn the state, but this learning can be arbitrarily inefficient. In
mazimal generations networks, agents arrive in generations of K individuals. Each
agent in a generation ¢ observes all agents in the previous generation ¢ — 1 and has
no other neighbors.
We can characterize Bayesian learning outcomes in such networks:
PROPOSITION 3.4. The aggregative efficiency of a maximal generations network
18
. ) (2K —1)
1 ey = M T
Jim (ri/8) =
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Fig. 1. A maximal generations network with generation size K = 3. An arrow from ¢ to j means
i observes j’s action.

In the long run, social learning aggregates fewer than 2 signals per generation with
any K. After generation 2, social learning aggregates fewer than 3 signals per
generation with any K.

Learning aggregates at most three signals per generation beginning with gener-
ation 3 and at most two signals per generation asymptotically. This bound holds
for any generation size, so learning can be arbitrarily inefficient: as K grows large,
only a vanishing fraction of the available signals gets aggregated.

The basic intuition is that these networks create severe confounding. An agent
in generation t observes many neighbors from the previous generation, who in
turn have both independent private signals and common social information from
observing generation ¢ — 2. The generation ¢ agent trades off overweighting the
common social information and underweighting the recent private signals. When ¢
is large, the Bayesian estimate puts almost no weight on the recent private signals.
Therefore, very little of the recent information becomes incorporated into beliefs.

Dasaratha and He [DH21a] also allow more general observation structures be-
tween generations: each agent may only observe a subset of the previous genera-
tion. Under a symmetry assumption, we express aggregative efficiency explicitly in
terms of the network parameters. Each generation continues to aggregate at most
two additional signals asymptotically, so learning remains very inefficient when
generations are large. We also show how structural parameters of the network in-
fluence efficiency: all else equal, aggregative efficiency increases when agents have
more neighbors and decreases when neighborhoods overlap more (i.e., when there
is more confounding).

4. NAIVE SOCIAL LEARNING

We now turn from Bayesian updating to naive updating and present results from
Dasaratha and He [DH20]. We maintain the model from Section 2, but ask how
the social network structure affects learning outcomes for agents with the following
behavioral bias:

Assumption 4.1. Each agent wrongly believes that each predecessor chooses an
action to maximize her expected payoff based only on her private signal, and not
on her observation of other agents.

This assumption was first studied by Eyster and Rabin [ER10]. Agents are other-
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wise Bayesian and maximize their expected utility. A key implication is that agents
fail to account for the correlation in their observed actions, and instead treat these
actions as independent.

As with Bayesian social learning, actions are log-linear for naive agents. Because
agents (incorrectly) believe their neighbors’ actions are identically distributed, the
weights on all observed actions are in fact equal:

a; Plw = 1]s;] a;
I =1 _ E 1 J .
Og(lai> Og(P[w_OSi]>+. Og(laj>
JEN;

This implies a simple expression for actions in terms of private signal realizations
and the adjacency matrix of the network:

PROPOSITION 4.2. Suppose the observation network between the first n agents
has the adjacency matriz M. The actions of these agents satisfy

. log ( FE=54)
: = -M)"" :
log (12 ) E=5)

where I is the n X n identity matriz.

The proposition says that actions are a log-linear combination of private signal
realizations, and the total weight that agent ¢ places on an earlier agent j’s signal
is equal to the number of paths from i to j in the observation network.

Unless the network is quite sparse, there are many paths to early agents, so
Proposition 4.2 implies that agents will put too much weight on early signals. This
can lead to mislearning: agents converge to believing strongly in the wrong state.
We compare the probability of such mislearning across network structures.

For example, we show the probability of mislearning is higher when the obser-
vation network is denser.! When the network is denser, there are more paths to
early agents, so a few misleading early signals will generate a wrong consensus.
A sparser network allows more independent information to accumulate before a
consensus forms.

This theoretical result gives a testable prediction about network structure and
learning accuracy, and we confirm this prediction in a social-learning experiment
with Amazon Mechanical Turk workers [DH21b]. Subjects play a social-learning
game on either a sparse or a dense observation network, depending on the treatment.
We find that later subjects’ guesses about the state are significantly more accurate
in the sparse treatment.? Despite providing more information, denser networks lead
to worse social-learning outcomes because confounding is more severe.

IFormally, we prove this result for weighted networks, defined in Dasaratha and He [DH20]. We
also provide simulation evidence for the same result on random networks.

2The experimental setup follows the model from Section 2 except for the action space, which we
took to be binary for simplicity.
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5. CONCLUSION

We have presented a tractable model of sequential social learning that lets us com-
pare learning across different networks, a topic with important social and economic
consequences but limited analytic results in the literature. When agents are ra-
tional Bayesians, we show that actions admit a signal-counting interpretation of
accuracy, derive analytic expressions for how learning efficiency changes with net-
work parameters, and quantify the extent of information loss due to confounding.
When agents learn using a naive heuristic that neglects correlation in predecessors’
behavior, we compute the exact probabilities of mislearning in different networks
and generate testable predictions that motivate laboratory experiments.

These results attest to the effectiveness and flexibility of the rich-signals, rich-
actions framework we use to study social learning in networks. We hope that this
framework can provide a complementary set of tools to the current techniques in
the social-learning literature, and enable future theoretical and empirical work on
which networks are most conducive to social learning.
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