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Abstract

We study learning on social media with an equilibrium model of users interacting with shared
news stories. Rational users arrive sequentially, observe an original story (i.e., a private signal)
and a sample of predecessors’ stories in a news feed, and then decide which stories to share.
The observed sample of stories depends on what predecessors share as well as the sampling
algorithm generating news feeds. We focus on how often this algorithm selects more viral
(i.e., widely shared) stories. Showing users viral stories can increase information aggregation,
but it can also generate steady states where most shared stories are wrong. These misleading
steady states self-perpetuate, as users who observe wrong stories develop wrong beliefs, and
thus rationally continue to share them. Finally, we describe several consequences for platform
design and robustness.
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1 Introduction

In recent years, viral content on social-media platforms has become a major source of news and

information for many people. What content users consume often depends on the news feeds created

by platforms like X, Facebook, and Reddit. Which stories go viral and which disappear is jointly

determined by the algorithms generating these feeds and users’ actions on the platforms (e.g.,

sharing, retweeting, or upvoting stories).

How does the design of the news feed affect how users learn on such platforms? Consider a

platform deciding how much to push widely shared (or highly upvoted) content into users’ news

feeds. On the one hand, a news feed that primarily shows users widely shared stories can create

a social version of the confirmation bias: incorrect but initially popular stories spread widely and

determine people’s beliefs, even though they are contradicted by most of the information that arrives

later. One might expect such feedback loops with naive users, but we show they can also arise in

an equilibrium model with rational users. The idea is that when stories supporting an incorrect

position are shared more, subsequent users tend to see these incorrect stories in their news feeds

due to the stories’ popularity, and hence form incorrect beliefs through Bayesian updating. If users

derive utility from sharing accurate content and thus share stories that agrees with their beliefs,

they will rationally share these false stories and further increase their popularity. Users have less

exposure to the true stories: even if these stories are more numerous, they are shared less than the

false stories and therefore shown less by the news-feed algorithm.

But on the other hand, selecting news stories based on their popularity may help aggregate more

information. Seeing a particular story in a news feed that selects widely shared content gives a user

more information than the realization of a single signal. The popularity of this story also tells the

user about the past sharing decisions of their predecessors, and thus lets the user draw inferences

about the many stories that these predecessors saw in their news feeds. In some circumstances,

seeing just a few stories in a news feed that emphasizes viral content can lead to strong Bayesian

beliefs about the state of nature. This can happen even if individual stories are imprecise signals

about the state, since sophisticated users can use the selection of these stories to infer much more

about sharing on the platform.

This work examines the trade-offs in choosing how much to feature viral content in a news
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feed and studies how this design choice affects social learning on the platform. There is an active

public discussion about how news feeds shape society’s beliefs. Some commentators have blamed

the widespread misinformation about issues ranging from public health to politics on social-media

platforms pushing viral but inaccurate content into users’ feeds. We contribute to this discussion by

developing an equilibrium model of people learning from news feeds and sharing news stories on a

platform. We characterize learning outcomes under different news-feed designs, taking into account

rational users’ responses to different designs and to other people’s equilibrium sharing patterns.

The model also provides insights on specific applied questions, such as how news-feed designs can

improve accuracy and when platforms are robust to manipulation by a malicious attacker.

In our model, a large number of users arrive in turn and learn about a binary state. Each user

receives a conditionally independent binary signal about the state (which we call a news story)

and observes a sample of stories from predecessors (which we call a news feed). These stories

are sampled using a news-feed algorithm that interpolates between choosing a uniform sample of

the past stories and choosing each story with probability proportional to its popularity (i.e., the

number of times it has been shared). Users are Bayesians and know the news-feed algorithm, so

they appropriately account for selection in the stories they see.1 Users then choose which of these

news-feed stories to share. We assume users prefer to share stories that match the true state, given

their endogenous beliefs. This simple utility specification, which one might think is conducive to

learning, can nevertheless generate rich learning dynamics including persistent learning failures.

News-feed algorithms in our model depend on a virality weight λ that captures the weight

placed on popularity when generating news feeds: higher λ corresponds to showing more viral

stories. The evolution of content on the platform is described by a stochastic process in [0, 1] we

call viral accuracy, which measures the relative popularity of the stories that match the true state

in each period. We show viral accuracy almost surely converges to a (random) steady-state value,

which depends on the randomness in signal realizations and in news-feed sampling. In equilibrium,

there is always an informative steady state where most stories in news feeds match the state. But

when the virality weight is high enough, there can also be a misleading steady state in equilibrium,

where most stories in news feeds do not match the state (so viral accuracy is less than 1
2). At a

1An alternative approach would be to assume users are naive and fail to account for this selection. Many of the
main forces we highlight in our equilibrium framework would also appear in this behavioral model.
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misleading steady state, users tend to see false stories, and therefore believe in the wrong state

and share these false stories. The misleading steady states correspond to the socially-generated

confirmation bias described above.

These misleading steady states emerge when λ crosses a threshold, which we call the critical

virality weight λ∗. Misleading steady states exist in equilibrium when virality weight is at or

above this threshold, but not below it. A key finding is that this emergence is discontinuous: at

the threshold virality level λ∗ where the misleading steady state first appears, the probability of

learning converging to this bad steady state is strictly positive. As a consequence, the accuracy

of content on the platform jumps downward at this threshold. Below the critical virality weight,

however, the unique informative steady state becomes monotonically more accurate as λ increases.

This result formalizes the intuition mentioned above that a more viral news feed helps aggregate

more information. Increasing λ therefore leads to a trade-off between facilitating more information

aggregation and preventing the possibility of a misleading steady state in equilibrium.

Since misleading steady states only appear when virality weight exceeds the threshold λ∗, com-

parative statics of this threshold with respect to other parameters tell us which platform features

make it more susceptible to misleading steady states. Platforms are more susceptible when news

stories are not very precise, when news feeds are large, and when users share many stories. That

is, misleading steady states arise on platforms that let users consume and interact with too much

social information relative to the quality of their private information from other sources.

We give two consequences of our results with implications for the design and regulation of

platforms. First, we describe a content-neutral policy that leads to better learning outcomes:

letting the virality weight λ vary over time. Consider generating initial agents’ news feeds with a

low virality weight but later agents’ news feeds with a high virality weight. We show there is a

simple equilibrium that achieves high viral accuracy without producing misleading steady states.

Intuitively, one way to improve learning is to let independent information accumulate early in the

discussion of a given issue and then exploit the advantages of showing viral content later in the

discussion. Second, we ask when a platform is robust to malicious attackers who manipulate its

content. If a platform chooses λ sufficiently below the threshold λ∗, a large amount of manipulation

is required to produce a misleading steady state. We provide a simple explicit lower bound on this

amount, which we interpret as a robustness guarantee.
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In our main model, agents observe the realizations of stories but not how viral those stories are.

Motivated by existing social-media platforms, where users usually observe some information about

the popularity of posts, we also consider a modified model where agents can distinguish between

viral and regular stories in their news feeds. Each time a user shares a regular story, there is a

chance of it “going viral” and creating a corresponding viral copy. A consistent conclusion that

we find in both the main model and this modified model is that there must be misleading steady

states when users see enough viral stories.

At a technical level, our paper applies mathematics techniques on stochastic approximation to

an equilibrium model where agents respond optimally to the evolution of a stochastic process. The

same techniques have been used in economics to study dynamics under behavioral heuristics (e.g.,

Benaïm and Weibull (2003) in evolutionary game theory or Arieli, Babichenko, and Mueller-Frank

(2022) in naive social learning). Applying these tools to a setting where agents are best responding

adds new challenges. Indeed, even for a fixed strategy, the system we study can often converge

to multiple steady states and there is no closed-form expression for the probability of reaching a

given steady state. Understanding outcomes under equilibrium sharing rules is even more complex.

To make progress despite this complexity, we show that outcomes under a specific simple strategy

(sharing stories that match a majority of one’s observations) tell us about the equilibrium outcomes

(which cannot be characterized directly). In particular, a misleading steady state exists when users

choose equilibrium sharing strategies if and only if one exists when users follow this simple strategy.

1.1 Related Literature

We first discuss how our model relates to a recent literature on learning from shared signals. Several

papers have looked at different models of news sharing or signal sharing. As we discuss in detail

below, the existing work focuses on the dissemination of a single signal, or on settings where signals

are shared once with network neighbors but not subsequently re-shared. Our model differs on

both of these dimensions. First, we consider a platform where many signals about the same state

circulate simultaneously. These signals interact: a user’s social information consists of the multiple

stories that they see in their news feed, so the probability that they share a given story depends

on whether the other stories corroborate it or contradict it. Second, we allow signals to be shared

widely through a central platform algorithm that generates news feeds for all users. A signal can

4



become popular due to early agents’ sharing decisions and get pushed into a later agent’s news feed,

and this later agent can re-share the same signal. The combination of these two model features

generates the social version of confirmation bias that we outlined earlier.

Bowen, Dmitriev, and Galperti (2023) study a model where signals are selectively shared at most

once with network neighbors, but agents are misspecified and partially neglect this selection. This

bias leads to mislearning, and it also generates polarization in social networks with echo chambers.

By contrast, we focus on rational agents who make endogenous sharing decisions in equilibrium.

Bowen et al. (2023) note that:

“[...]the Internet has also brought an abundance of information, which should lead people

to learn quickly and beliefs to converge (not diverge) according to standard economic

models.”

Our results imply that even if people observe a large (but finite) amount of information and ratio-

nally account for selection, they can converge to a misleading steady state if they mostly observe

social information from peers (as may be the case on real-world social-media platforms). Indeed,

our comparative statics results in Section 3.5 show that the possibility of a misleading steady state

arises precisely when users are exposed to more social information and less private information.

Another group of papers in operations research and economics study settings with “fake news”

where people decide whether to share a story depending on the outcome of a (possibly noisy) fact

check (e.g., Papanastasiou (2020), Kranton and McAdams (2023), and Merlino, Pin, and Tabasso

(2023)) or depending on their prior beliefs about the story’s likelihood (e.g., Bloch, Demange,

and Kranton (2018), Acemoglu, Ozdaglar, and Siderius (2022) and Hsu, Ajorlou, and Jadbabaie

(2021)). Most of these papers consider the diffusion of a single signal that can be re-shared through

a network, while Kranton and McAdams (2023) look at the supply-side decisions of information

producers when consumers can share their stories at most once with network neighbors.2 We focus

on a different dimension of platform-design choices. Instead of asking about the network structure

that connects users on the platform (e.g., echo chambers) or fact-checking technologies, we consider

the platform’s choice in terms of showing its users more or less viral content.

Buechel, Klößner, Meng, and Nassar (2023), like our work, consider an environment where
2Merlino, Pin, and Tabasso (2023)’s model features one true and one false message.

5



agents can share and re-share copies of a signal. They study a model in which agents’ sharing

behavior resembles the DeGroot heuristic. In particular, their agents’ sharing is independent of

beliefs, while we study sharing rules that seek to share correct stories and therefore depend on

beliefs.

Finally, there are some similarities between misleading steady states in our model and herding

in observational social-learning models (Banerjee (1992), Bikhchandani, Hirshleifer, and Welch

(1992), and a large subsequent literature3). In both cases, incorrect initial signals can lead to

persistent wrong beliefs. A high-level distinction is that agents observe signals directly, rather

than actions incorporating signals, but the observed signals are endogenously selected. At a more

theoretical level, we consider an environment with an inherent constraint on the informativeness

of social observations, where the expected accuracy of the news feeds is uniformly bounded away

from 1 across all strategies of the agents. This leads to several new dynamics relative to the

classical herding literature. First, agents learn imperfectly in the long run even without herding-

type behavior, so we can quantitatively compare how long-run learning outcome changes across

different platform parameters (e.g., Proposition 3). Such comparisons are key to the main trade-off

between more information aggregation and misleading steady states. Second, misleading steady

states persist in our model even though new private information continues to arrive and get shared

on the platform. By contrast, the classical herding results rely sharply on the later agents’ private

signals becoming completely lost once society reaches an information cascade.

2 Model

We consider a finite society with n people learning in sequence about an unknown state of nature

ω ∈ {−1, 1}. Everyone starts with the common prior that both states are equally likely. Each

agent receives a binary private signal si ∈ {−1, 1} about the state, interpreted as a news story.

Call si = −1 a negative story and si = 1 a positive story. We assume stories are conditionally

independent and symmetric, so that P[si = −1|ω = −1] = P[si = 1|ω = 1] = q for some story
3Perhaps closest to our model within the observational social-learning literature, several papers assume agents

observe a random sample of predecessors’ actions (Banerjee and Fudenberg (2004), Lévy, Pęski, and Vieille (2022),
and Kabos and Meyer (2021)). Our techniques, meanwhile, are based on the same mathematics literature as Arieli,
Babichenko, and Mueller-Frank (2022), who model the distribution of actions taken by agents as a generalized Pólya
urn.
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precision 0.5 < q < 1. We also keep track of the popularity score of each story si, denoted ρ(si).

Each story starts with a score of 1 when it is first posted, and the score increases by 1 each time

the story is shared by someone else.

We fix a news feed size K ≥ 1. The first K agents receive no information other than their own

news stories and mechanically post these stories onto the platform. (Our analysis would remain

unchanged if we instead began with an exogenous finite pool of stories drawn from any distribution

that is state-symmetric in the sense that the distribution over the number of stories matching the

state does not depend on the state.) For each i ≥ K + 1, agent i sees a news feed containing K

stories posted by predecessors. The news feed only shows the realizations of the K sampled stories,

but not their popularity scores or arrival times. Then, agent i shares C out of the K stories from

their news feed, increasing each shared story’s popularity score by 1, for some capacity C ≤ K/2.

Agent i gets utility u > 0 for each shared story that matches the state ω. Agent i also posts their

own story si onto the platform.

The platform’s virality weight λ ∈ [0, 1] determines how it samples K stories to populate i’s

news feed. For each of the K slots in the news feed, with probability λ, a story is sampled with

probabilities proportional to the i − 1 stories’ current popularity scores. With the complementary

probability, a story is sampled uniformly at random from the i − 1 stories. We assume for simplic-

ity that all stories are sampled with replacement (as we approach the steady state, the effect of

replacement vanishes). All draws are independent.

The platform’s sampling rule includes two special cases:

1. Popularity-based sampling (λ = 1): A story that has been shared twice as often as

another has twice the probability of being sampled.

2. Uniform sampling (λ = 0): Predecessors’ sharing decisions do not affect sampling.

More generally, sampling rules with λ between zero and one interpolate between these two cases.

The virality weight λ measures how much the news feed shows more popular stories relative to

random stories.

The n agents are uniformly randomly placed into the n positions, and do not know their posi-

tions. Each agent (correctly) believes that they are in each position 1, . . . , K with equal probabilities
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if they do not observe a news feed, and in each position K + 1, . . . , n with equal probabilities if

they do observe a news feed. The informational environment is common knowledge.

2.1 Discussion and Interpretation

In this section, we discuss our interpretation of the model and the reasons behind our model-

ing choices. We begin by explaining connections to social-media platforms and then discuss our

assumptions about users’ behavior and information.

Our Model of Platforms. We view the news stories si as original content that users discover

from external sources (e.g., opinion pieces from local newspapers, new scientific preprints, etc.) and

post on the social-media platform (e.g., X, Facebook, or Reddit). We assume that agents always

post their stories to ensure that new private information continues to arrive and spread on the

platform, but could easily adapt our results to other assumptions about the information arrival

process.

The platform presents each user with a news feed of stories that others have posted, and gives

users some way of expressing endorsement for the content discovered by others. What we generically

refer to as “sharing” in our model corresponds to retweeting on X, reposting content you saw on

Facebook on your own timeline, upvoting a story on Reddit, and so forth.

The news-feed algorithm determines what content is shown. It can focus on showing more

viral content (larger λ) or more “random” content (smaller λ). Displaying “random” content could

represent, for example, showing a user the most recent stories that their friends posted without

regard for the stories’ popularity score. The functional form we chose above to model this trade-off

has the particularly useful property that the total popularity scores of positive and negative stories

are a sufficient statistic for the distribution of sampled stories, but other functional forms are also

possible. In particular, platforms could also use more extreme sampling rules that place more

weight on more viral stories than popularity-based sampling (e.g., the probability of sampling a

story is proportional to the square of its popularity).

The virality of the news feed is a design choice that social-media companies devote substantial

attention to in practice. Over the years, different iterations of the X (Twitter) feed gave different

levels of emphasis on the trending or most popular tweets on the platform. For Reddit, its ordering

algorithm for displaying posts on the front page evolved over a decade. An entry on Reddit’s
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company blog in 2009 shows the platform designers are well aware of the disadvantages of putting

too much emphasis on the most highly upvoted content:

“Once a comment gets a few early upvotes, it’s moved to the top. The higher something

is listed, the more likely it is to be read (and voted on), and the more votes the comment

gets. It’s a feedback loop” (Munroe, 2009).

User Behavior. Turning to user behavior, we assume that users are rational and want to share

stories that match the true state. We will see that even under these assumptions, which we view

as relatively conducive to learning, there are often misleading steady states. The assumption that

users want to share correct content is also motivated by empirical evidence on sharing behavior. In

laboratory experiments, Pennycook et al. (2020, 2021) find people have an intrinsic preference for

sharing news from more trustworthy sources, which are more likely to accurately reflect the state.

We will see in Section 3.3 that our analysis is robust to including other motivations for sharing if

users also care enough about sharing accurate content. But different types of preferences could lead

to different dynamics. In particular, if users care primarily about influencing the long-run accuracy

of content on the platform or an eventual societal decision, then it might be possible for them to

avoid misleading steady states.

We also consider a symmetric prior over the two states, which allows us to consider a restricted

class of strategies and simplifies best responses in the absence of misleading steady states. Exact

symmetry of priors is not needed for our analysis (see Section 3.3), but dropping our symmetry

assumption on strategies would considerably complicate the analysis.

We assume an explicit capacity constraint C on how much people can share. The primary reason

is tractability, as the analysis is considerably cleaner when the number of stories shared does not

depend on the realizations of the sampled stories. A capacity constraint also captures the fact

that people tend to only share a small fraction of the content that they consume on social-media

platforms.4 Note that even if the agents are not forced to share exactly C stories out of the K in

their news feeds, they would still find it optimal to share up to the capacity constraint. This is

because they incur no marginal cost from sharing and no penalty from sharing an incorrect story,
4For example, even among the top 10% of tweeters on X, the median number of favorites per month is 70 and the

median number of tweets per month is 138, which are presumably much lower than the number of tweets that these
users read per month (Wojcik and Hughes, 2019).
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and they will always believe that each story has a positive probability of being correct.

In our main model, agents do not see the current popularity scores or the arrival times of the

stories in their news feeds. This assumption is motivated by the difficulty of inferring the state from

the popularity or age of observed posts. Indeed, in reality these inferences are likely complicated

further by characteristics of news stories outside of our model.5 In Section 5, we allow agents to

observe some information about the popularity of stories. We also assume that people do not know

their order in the sequence. This is likely more realistic than assuming that everyone knows their

precise order. From a technical perspective, it is also the more tractable assumption that lets us

focus on analyzing long-run steady states.6

2.2 Strategy, Symmetric BNE in Finite Societies, and Limit Equilibrium

An agent who does not see a news feed has no decisions to make. We therefore define a mixed

strategy in the game to be σ : {−1, 1} × {0, ..., K} → ∆({0, 1, ..., C}), so that σ(s, k) gives the

distribution over the number of positive stories shared when the agent discovers the story s and

sees a news feed with k positive stories out of K.7 We will regard the space of mixed strategies as a

subset of R2(K+1)(C+1) with the standard Euclidean norm. Mixed strategies must satisfy feasibility

constraints in terms of the available numbers of positive and negative stories to share, so σ(s, k)

cannot have values larger than k or smaller than C + k − K in its support for any 0 ≤ k ≤ K. Note

that we only need to discuss positive stories since the agent must always share C stories in total.

A simple strategy, which will play a central role in our analysis, is to follow the majority of the

stories in the news feed (breaking ties in favor of the private signal):

Definition 1. The majority rule is the strategy defined by σmaj(s, k)(C) = 1 if either k > K/2 or

k = K/2 and s = 1, and σmaj(s, k)(0) = 1 otherwise.

The majority rule is a pure strategy that either shares C stories with the realization of 1 or C

stories with the realization of −1, depending on the news-feed majority. Note the majority rule is
5Vosoughi, Roy, and Aral (2018) find that fake news spreads more widely than accurate stories, and Altay,

De Araujo, and Mercier (2022) argue this is because fake news stories are more interesting to users.
6In our model where agents hold a uniform prior over positions, we will be able to analyze changes in the platform

over time without needing to account for time-varying strategies. If agents know their positions, strategies and the
content on the platform are both changing over time, and even basic convergence properties are unclear.

7Agents cannot distinguish between different positive (or negative) stories in their news feeds. Moreover, which
positive (or negative) stories they share does not affect subsequent agents’ observations under the family of sampling
rules we consider.
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feasible because we have assumed C ≤ K/2. The majority rule need not be an equilibrium strategy

in general — intuitively, it is only optimal when stories in agents’ news feeds are more informative

than their private stories. Nevertheless, it turns out the majority rule will help us understand the

qualitative properties of equilibrium outcomes even when it is not itself an equilibrium.

We apply the solution concept of Bayesian Nash equilibrium (BNE). Note that all possible

observations are on-path given any strategy profile. We focus on player-symmetric and state-

symmetric BNE: that is, a BNE where each agent uses the same strategy σ, and σ treats positive

and negative stories symmetrically.8 We abbreviate this refinement as “symmetric BNE.”

We are mainly interested in analyzing the limits of symmetric BNE when the number of agents

on the platform grows large, and studying the accuracy of the resulting news feeds in the long run.

Such a limit is well defined because for fixed parameters q, K, C, λ, the space of strategies stays

constant as the number of agents n grows.

Definition 2. For fixed q, K, C, λ parameters, a mixed strategy σ∗ is a limit equilibrium if there

exists a sequence of symmetric BNE (σ(j))∞
j=1 for finite societies with nj agents and the same

q, K, C, λ parameters, where nj → ∞ and limj→∞ σ(j) = σ∗.

Symmetric BNE and limit equilibria both exist for all parameter values:

Proposition 1. For any finite n and parameters q, K, C, λ, there exists a symmetric BNE. For

any parameters q, K, C, λ, there exists a limit equilibrium.

The proof shows that there is a symmetric BNE for all n via a standard fixed-point argument.

Since the space of feasible mixed strategies can be viewed as a compact subset of a finite-dimensional

Euclidean space, a limit equilibrium must exist.

3 Steady States and Equilibrium Steady States

We begin this section by describing the structure of steady states under a fixed strategy σ. We then

distinguish informative and misleading steady states. The third subsection describes equilibrium

strategies and the structure of steady states under equilibrium behavior. We then provide numerical
8More precisely, state symmetry means that for every s ∈ {−1, 1} and 0 ≤ k ≤ K, we have σ(s, k)(z) = σ(−s, K −

k)(C − z) for each 0 ≤ z ≤ C.
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illustrations of equilibria and the corresponding steady states. The final section considers how the

structure of equilibrium steady states changes as we change the model parameters.

3.1 Definition and Characterization of Steady States

Suppose everyone uses the same strategy σ, which needs not be an equilibrium, and the true state

is ω. How will the total popularity score of the correct stories that match the state compare with

that of the incorrect stories in the long run? We define the concept of steady states to study this

question.

Given the true state of nature ω, a finite set of t stories (s1, ..., st) on the platform and the

popularity scores of these stories ρ(si), the viral accuracy of the platform is defined to be

x(t) =
∑

i:si=ω ρ(si)∑t
j=1 ρ(sj)

.

Viral accuracy measures the relative popularity of the stories that match the true state. Imagine a

society with infinitely many agents, with all agents i ≥ K + 1 using the strategy σ. This induces a

stochastic process (x(t))∞
t=1 where x(t) is the viral accuracy of the platform after agent t has acted.

Definition 3. A point x∗ such that x(t) → x∗ with positive probability is a steady state of the

strategy σ.

When viral accuracy converges to a steady state x∗, roughly x∗ fraction of the total popularity

score on the platform is associated with correct stories in all late enough periods. This fraction

persists as fresh stories get posted on the platform each period and agents use σ to decide which

stories to share from their randomly generated news feeds. The next result tells us that for any

state-symmetric strategy, viral accuracy almost surely converges, and the set of steady states X∗

is finite.

Proposition 2. Given a state-symmetric strategy σ, there is a finite set of steady states X∗ ⊆ (0, 1)

such that when all agents use σ, almost surely x(t) → x∗ for some x∗ ∈ X∗.

The proof uses a convergence result from stochastic approximation (Theorem 2.1 from Chapter

2 of Borkar, 2023). When X∗ contains at least two elements, the limit steady state x∗ ∈ X∗ is
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random and can depend on the early agents’ private signal realizations and the random sampling

involved in generating news feeds.

The basic idea behind the proof of Proposition 2, as well as much of the subsequent analysis,

is that we can describe the state of the system in terms of x(t) and the fraction of stories up to

time t that match the state. We can decompose the change x(t + 1) − x(t) between periods into a

deterministic term (which we will approximate using the inflow accuracy function defined below)

and a martingale noise term. Given this decomposition, a martingale convergence theorem shows

that x(t) converges almost surely.

In light of Proposition 2, we write π(· | σ) for the distribution over steady states generated by

a state-symmetric strategy σ.9 A substantial challenge in analyzing our model is that we cannot

obtain closed-form expressions for π(· | σ) as these probabilities depend on a complicated stochastic

process. We focus instead on understanding when the support of π(· | σ), which is the set of steady

states, contains certain values of x. We will see this question is already highly non-trivial, and the

answers will have interesting implications for understanding equilibrium and design questions.

Our next result will characterize the support of the distribution π(· | σ) over steady states in

terms of the fixed points of an inflow accuracy function, which we now define. Suppose today’s

viral accuracy is x, and exactly q fraction of the stories on the platform are correct. A new agent

must increase the total popularity score on the platform by C + 1, as they share C existing stories

and post a new story. We define the inflow accuracy function ϕσ(x) to be the expected fraction of

the incoming C + 1 popularity score that will be allocated to stories that match the state.

Definition 4. The inflow accuracy function is

ϕσ(x) := q +∑K
k=0 Pk(x, λ) · [q · E[σ(1, k)] + (1 − q) · E[σ(−1, k)]]

1 + C

where Pk(x, λ) := P[Binom(K, λx + (1 − λ)q) = k] and Binom(K, p) is the binomial distribution

with K trials and success probability p.

To understand the formula in the definition, note that λx + (1 − λ)q is the sampling accuracy

of the platform: the probability of each news-feed story being correct, given viral accuracy x and
9By symmetry of σ and of the environment, the distribution over steady states is the same conditioning on ω = 1

and ω = −1.

13



virality weight λ. We can use sampling accuracy to express the probability of getting k positive

stories out of K in the news feed when ω = 1 for every 0 ≤ k ≤ K, then consider how the strategy

σ combines the private signal si and the number of positive stories in the news feed to make a

sharing decision. Finally, ϕσ(x) also takes into account that the story posted by the agent, which

starts with a popularity score of 1, has q chance of matching the state. While ϕσ(x) is defined in

terms of the expected fraction of the new popularity score assigned to correct stories when ω = 1,

the symmetry of the environment and of σ implies that it also describes the same fraction when

ω = −1.

We always have ϕσ(0) > 0 and ϕσ(1) < 1. The idea is that if x ≈ 0 and almost all of the

popularity score are associated with the wrong stories, then the arrival of fresh stories posted by

new agents tends to increase x, as a majority of these stories match the state. If on the other hand

x ≈ 1, then these fresh stories will on average lower x, since they have a non-zero probability of

mismatching the state. So ϕσ must have a fixed point by continuity.

A fixed point of the inflow accuracy function ϕσ is a natural candidate for a steady state induced

by σ, as it intuitively represents a level of viral accuracy that tends to be exactly maintained on

average by the inflow of new popularity score, on a platform with sufficiently many stories so that

approximately q fraction of them match the true state. The next result establishes this formally,

provided the fixed point is not unstable from both sides.

Theorem 1. We have π(x∗ | σ) > 0 if ϕσ(x∗) = x∗ and there exists some ϵ > 0 so that either

(a) ϕσ(x) < x for all x ∈ (x∗, x∗ + ϵ), or (b) ϕσ(x) > x for all x ∈ (x∗ − ϵ, x∗). Conversely, for

x∗ ∈ [0, 1], we have π(x∗ | σ) > 0 only if ϕσ(x∗) = x∗.

We first discuss fixed points which are stable from both sides. As an example, Figure 1 plots

the inflow accuracy function for the majority rule when K = 7, C = 3, q = 0.55, and λ = 1. There

are two fixed points that are stable from both sides, and Theorem 1 implies both are steady states.

At the upper fixed point, stories matching the state are more popular. At the lower fixed point,

however, incorrect stories are more popular than correct stories. Under the majority rule, such

a misleading state is reached with positive probability: if enough initial stories are incorrect, the

majority rule will continue sharing incorrect stories. We will see in Section 3.3 these misleading

steady states can also arise under equilibrium behavior.
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Figure 1: The inflow accuracy function for the majority rule with K = 7, C = 3, q = 0.55, λ = 1.

The more subtle case is a fixed point of ϕσ that is unstable from one side (see Figure 2 for

an illustration). A touchpoint of ϕσ is a fixed point x∗ = ϕσ(x∗) where exactly one of condition

(a) or condition (b) from Theorem 1 holds (so x∗ is only stable from one side). Theorem 1 says

that if ϕσ has a touchpoint x∗, then viral accuracy converges to x∗ with positive probability. This

means the distribution over steady states is discontinuous in the strategies that agents use and

discontinuous in parameters of the model such as λ and q, and we will discuss some consequences

of the discontinuity below.

One might expect that the stochastic process of viral accuracy should not converge with positive

probability to fixed points of ϕσ which are unstable from one side, because random noise in the

process x(t) can bring it to the unstable side of the fixed point. But careful analysis shows that

there is a positive probability event that x(t) converges to the touchpoint x∗ while entirely staying

on the stable side, with the noise terms never being large enough to move the process over to the

unstable side. This is because the noise terms from a single agent’s sharing choices become smaller

over time and do so sufficiently quickly. The proof extends the techniques of Pemantle (1991),

which shows a similar result for generalized Pólya urns.10

10Our model does not fit Pemantle (1991)’s definition of a generalized Pólya urn because (1) the relevant stochastic
process in our model is two-dimensional since we keep track of both the fraction of stories that match the true state
and the viral accuracy, and (2) signals are shared in correlated groups of C + 1 signals rather than one at a time.
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Figure 2: The inflow accuracy function for the majority rule with K = 7, C = 3, q = 0.55, λ ≈ 0.76.
Here ϕσmaj has two fixed points: the left fixed point is a touchpoint that is only stable from the
left side (the red box shows a zoomed-in view). The right fixed point is stable from both sides.
Theorem 1 implies viral accuracy has a positive probability of converging to each of these two fixed
points.

3.2 Informative and Misleading Steady States

We may classify steady states into two types. One type is an informative steady state, where

sampling accuracy is above 1/2 and it is more likely that stories in the news feed are true. The

other type is a misleading steady state, where the opposite happens.

Definition 5. A steady state x is informative if λx+(1−λ)q ≥ 1/2, and strictly informative if this

inequality is strict. A steady state x is misleading if λx + (1 − λ)q ≤ 1/2, and strictly misleading

if this inequality is strict.

Even reasonable strategies like the majority rule σmaj can generate misleading steady states.

Recall from Figure 1 and the discussion after Theorem 1 that σmaj has two steady states with the

parameters K = 7, C = 3, q = 0.55, and λ = 1. One is informative, but the other is misleading.

In a misleading steady state, the virality of false stories becomes self-sustaining. The state

might be ω = 1 but most people see negative stories in their news feeds, as the platform’s virality

weight implies the popular false stories tend to get shown to users. This happens even though the

total number of negative stories is smaller than the total number of positive stories on the platform.
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Figure 3: The inflow accuracy function for the majority rule with q = 0.55, K = 7, C = 3, and
λ ∈ {0.3, 0.6, 0.9}. With λ = 0.3 and λ = 0.6, there is a single informative steady state. With
λ = 0.9, a misleading steady state appears.

Under the majority rule σmaj, for example, agents will then share the negative stories from their

news feeds, which further perpetuates these stories’ popularity and makes them more likely to be

seen by future agents.

We will see that ϕσmaj , the inflow accuracy function associated with the majority rule, plays an

important role in determining the equilibrium steady states of any limit equilibrium. As a first step

in this direction, we observe that the steady states of the majority rule σmaj satisfy the following

useful properties:

Lemma 1. If x is a steady state of σmaj, then it is strictly informative if and only if x > 1/2, and

strictly misleading if and only if x < 1/2. Also, x = 1/2 is not a fixed point of ϕσmaj.

Steady states are generally classified as informative or misleading depending on the sampling

accuracy. The lemma says for the majority rule, we can equivalently classify steady states based

on whether viral accuracy is larger than 1/2.

The number of steady states for a fixed strategy depends on λ. The three figures below plot the

inflow accuracy function with q = 0.55, K = 7, C = 3 and the majority rule. The three plots in

Figure 3 correspond to three different values of λ: λ = 0.3, λ = 0.6, and λ = 0.9. When λ = 0.3

and λ = 0.6, there is only an informative steady state, and this steady state is more accurate when

λ = 0.6. But when λ = 0.9, there is both an informative steady state and a misleading steady state.
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3.3 Equilibrium Steady States

So far, we have discussed steady states associated with arbitrary strategies. We are mainly inter-

ested in equilibrium steady states, that is the distribution π(· | σ∗) when σ∗ is a limit equilibrium

strategy.

We now define the critical virality weight, which is the smallest λ for which there is a misleading

steady state under the majority rule. We will see the set of equilibrium steady states changes sharply

around this critical value of λ.

Definition 6. The critical virality weight λ∗ is

λ∗ := inf{λ ∈ [0, 1] : ϕσmaj(x∗) = x∗ for some x∗ ∈ [0, 1/2]},

provided this set is non-empty. Otherwise, we let λ∗ = ∞.

Depending on the values of the parameters q, K, C, it turns out that either σmaj only has strictly

informative steady states for any virality weight (so λ∗ = ∞), or there is some smallest 0 < λ∗ ≤ 1

where a fixed point in [0, 1/2] first appears for ϕσmaj . For instance, for q = 0.55, K = 7, C = 3,

Figure 2 shows that λ∗ ≈ 0.76. The next theorem fully characterizes when misleading steady states

exist across all limit equilibria for every level of λ.

Theorem 2. For 0 < λ ≤ λ∗, the unique limit equilibrium is σmaj. At every λ < λ∗, σmaj only

has one equilibrium steady state, and it is strictly higher than q (thus, strictly informative). For

λ ≥ λ∗, every limit equilibrium induces at least one strictly misleading steady state.

This result shows how the platform’s virality weight affects the types of equilibrium steady

states: there are only informative equilibrium steady states when λ < λ∗, while there will always

be misleading equilibrium steady states when λ ≥ λ∗.11 It also shows the majority rule is the

only possible limit equilibrium for non-zero virality weights below the critical virality weight λ∗.12

For virality weights above λ∗, the majority rule may not be a limit equilibrium, and there may be

multiple limit equilibria. Nevertheless, the result tells us that every limit equilibrium has a positive
11We will see in Proposition 5 that λ∗ is finite whenever K and C are large enough, so misleading steady states

can indeed arise.
12When λ = 0, the only possible equilibrium steady state is q, so every story in the news feed is exactly as

informative as one’s private signal. There is thus some degree of freedom in tie-breaking when there is one more
positive story than negative story in the news feed and one’s private signal is negative.
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probability of generating a misleading steady state where false stories dominate news feeds. Users

are aware of the possibility of a misleading steady state and would like to correct for it, but are

unsure whether society converged to a misleading steady state or an informative one.

The theorem greatly simplifies checking whether there is a misleading steady state at a limit

equilibrium under given parameter values. Without the theorem, checking for misleading steady

states would require solving for equilibrium strategies, which is a complicated calculation depending

on π(·|σ) and therefore the entire stochastic process. The theorem says we can instead check for

misleading steady states under the majority rule, which are simply roots of a polynomial.

This reduction relies on two properties, established in the proof: (1) if any strategy sustains a

misleading steady state, then the majority rule does too,13 and (2) when there are no misleading

steady states, the majority rule is a best response if the number of agents n in the society is suffi-

ciently large. These properties give an intuition for why rational agents fail to prevent misleading

steady states. For parameter values where the majority rule sustains a misleading steady state,

there are of course other symmetric strategy profiles that only admit informative steady states.

But no such strategy can be a limit equilibrium, because rational agents prefer to deviate to the

majority rule in the absence of misleading steady states. So every limit equilibrium must sustain

misleading states if the majority rule does so.

Property (2) is robust to some variation in agents’ beliefs and preferences. Majority rule is a

strict equilibrium whenever there is no misleading steady state, and can give a substantially higher

payoff than other strategies in some cases (e.g., when the news feed size K is even and signals are

precise). So steady states under equilibrium strategies can have the same basic structure if agents

want to share accurate stories but also have other motivations (e.g., sharing stories that will be

shared by others or influencing others’ beliefs). Similarly we can allow asymmetric priors over the

two states. Naturally very different preferences or priors could lead to different dynamics.

Finally, Theorem 1 and Theorem 2 together imply a discontinuity in equilibrium learning out-

comes at λ∗. For λ just below λ∗, we converge almost surely to a steady state where a majority

of users believe the true state is more likely. But when λ = λ∗, there is a positive probability

of converging to a misleading steady state. The expected accuracy under the limit equilibrium
13This makes use of the capacity constraint model of sharing. If the number of stories shared depended on the

realization of the sampled signals, it seems plausible there could be a misleading steady state under a strategy that
sometimes shares fewer stories than the majority rule but not under the majority rule.
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strategy σmaj also discontinuously drops at λ∗:

Corollary 1. The expected steady-state viral accuracy under the unique limit equilibrium jumps

downward at λ∗:

lim
λ→(λ∗)−

Eπ(x∗|σmaj,λ)[x∗] > Eπ(x∗|σmaj,λ∗)[x∗].

The corollary means that outcomes can be very sensitive to design choices, and we discuss one

consequence in Section 4.2.

We now turn to benefits of higher virality weight λ∗. Our next result says that larger a virality

weight can lead to a stronger consensus:

Proposition 3. For λ ∈ [0, λ∗), the unique steady state x∗ at the unique limit equilibrium under λ

is strictly increasing in λ.

In the region of virality weights that do not generate misleading equilibrium steady states,

increasing λ allows more information aggregation. This is because a positive story in i’s news feed

not only tells i about the realization of a single signal, but also lets i draw inferences about the

hidden information available to i’s predecessors who may have chosen to share that positive story.

As λ increases, the sampled news-feed stories are closer to indicating a consensus among many

agents.

We state the proposition for λ < λ∗, but a similar argument also shows that increasing λ tends

to increase consensus in other regions as well. Formally, consider any interval (λ, λ) on which the

set of limit equilibria and the set of steady states under each equilibrium are unchanged. Fix a

limit equilibrium σ∗ and a continuous selection x∗(λ) of a steady state for each λ ∈ (λ, λ). Then

|x∗(λ) − 1
2 | is strictly increasing in λ on the interval (λ, λ). Informative steady states become more

accurate, while misleading steady states induce a stronger wrong consensus.

Theorem 2 and Proposition 3 together formalize the trade-off in the virality weight λ described

in the introduction. Increasing λ initially increases the steady-state viral accuracy and sampling

accuracy. But starting at a critical threshold λ∗, it discontinuously creates the social form of con-

firmation bias discussed in the introduction, which we have now formalized in terms of a misleading

steady state.
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3.4 Numerical Illustrations of Equilibrium for λ > λ∗

Theorem 2 determines the unique equilibrium for λ ≤ λ∗ but does not give a complete characteriza-

tion when λ > λ∗. To illustrate equilibrium behavior and the distribution of long-run viral accuracy

on platforms in this region, we describe several numerical examples. We find agents adjust their

behavior considerably in response to the possibility of misleading steady states, but nevertheless

converge to misleading steady states quite often.

We numerically estimated equilibria for news feed sizes K ∈ {6, 8, 10} in an example with

virality weight λ = 1, story precision q = 0.55, and sharing capacity C = 3. The virality weight

λ = 1 is strictly higher than the critical virality weight λ∗ in each of these environments. For each

K, we first check for a pure strategy equilibrium and then check for a mixed strategy equilibrium

of a particular form (see details in Appendix B). In all cases this procedure finds a single limit

equilibrium, which we describe below.

We find that the limit equilibrium is mixed for K = 6. If at least three out of the six stories

in the news feed match the agent’s private signal si, then the agent always shares three news-feed

stories that match si. If two out of the six news-feed stories match si, then the agent shares the two

stories matching si (and one other story) with probability 19.26%, and with the complementary

probability shares three stories that do not match si. If fewer than two news-feed stories match si,

then the agent shares three stories that do not match si.

Similarly, the limit equilibrium is also mixed for K = 8. If at least four out of the eight stories

in the news feed match the agent’s private signal si, then the agent always shares three news-feed

stories that match si. If three out of the eight news-feed stories match si, then the agent shares the

three stories matching si with probability 72.11%, and with the complementary probability shares

three stories that do not match si. If fewer than three news-feed stories match si, then the agent

shares three stories that do not match si.

We find a different equilibrium structure for K = 10: the limit equilibrium is a pure strategy.

If there is a supermajority of at least seven stories with the same realization in the news feed, then

the agent shares three news-feed stories from the majority side. Otherwise, the agent shares three

stories that match their private signal si.

The intuition behind these equilibria is that the possibility of the platform being stuck in a
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misleading steady state makes news-feed stories less informative about the state of the world. When

λ < λ∗, news-feed stories are strictly more informative than private signals. In these equilibria,

however, an observation of k positive stories and k − 2 negative stories in the news feed is either

exactly as informative as one positive private signal (as in the mixed equilibria for K = 6 and

K = 8) or strictly less informative (as in the pure equilibrium for K = 10).

Under the estimated limit equilibria, we simulate the evolution of content on the platform in

10,000 trials with 40,000 periods each. We find that the viral accuracy is below 1
2 after 40,000

periods 35.7% of the time with K = 6, 28.2% of the time with K = 8, and 28.1% of the time

with K = 10. The probability of viral accuracy being near the misleading steady state after a

large number of periods is therefore quite substantial in each case. This suggests that society

often converges to misleading steady states, even when users adjust their behavior to follow private

signals more often.

3.5 Comparative Statics

Theorem 2 characterizes the critical virality weight λ∗ as the smallest value of λ such that the

polynomial ϕσmaj(x) has a touchpoint. We now use this characterization to show how the critical

virality weight changes with respect to parameters of the environment. A lower critical virality

weight means an equilibrium misleading steady state exists for a larger set of sampling rules. So we

interpret the exercise as asking what properties of the environment and social-media platform lead

to situations where false stories generate news feeds, holding fixed the platform’s sampling rule.

Proposition 4. Let λ∗(q, K, C) be the critical virality weight for parameters (q, K, C).

• λ∗(q′, K, C) ≥ λ∗(q, K, C) if q′ > q

• λ∗(q, K, C ′) ≥ λ∗(q, K, C) if C ′ < C

• λ∗(q, K − 2, C) ≥ λ∗(q, K, C) for every K

• λ∗(q, K + 1, C) ≥ λ∗(q, K, C) if K is odd

• λ∗(q, K − 1, C) ≥ λ∗(q, K, C) if K is odd

All of these inequalities are strict whenever λ∗(q, K, C) is finite.
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The overall message is that misleading steady states emerge when individuals consume and

interact with a large amount of social information on the platform relative to the amount of private

information that they have from other sources. It is easier to generate a misleading equilibrium

steady state when individual stories are noisy signals of the state of nature (so there is little private

information), when users can share a large number of stories in their news feeds, and when users read

many stories on the social-media platform. Intuitively, since each individual’s private information

is untainted by the popularity of various stories on the social-media platform, a sufficient amount

of high-quality private information can counteract the harmful effects of trending false stories in

news feeds. On the other hand, if users spend a great deal of time on the platform, browsing many

stories in their news feeds and sharing many of the stories they read, then they are more likely to

fall prey to a misleading steady state and help perpetuate the virality of inaccurate news.

The comparative statics in K depend on the parity of K. Misleading steady states are less likely

for even K because agents with symmetric social observations (i.e., K/2 news-feed stories matching

each state) follow their private signals, which match the true state more frequently. Aside from this

detail, however, increasing K does create misleading steady states for a larger set of parameters.

While Proposition 4 tells us the direction in which λ∗ changes as K and C increase, we may

still want to know the extent to which these two parameters can affect the critical virality weight.

The next result shows the full range of possible critical virality weight values when we fix the story

precision and change how many news stories people read and share.

Proposition 5. For any q, K, C, we have λ∗(q, K, C) > 1 − 1
2q . But for any fixed 1/2 < q < 1 and

any λ > 1 − 1
2q , there exist K, C so that whenever K ≥ K, C ≥ C, we have λ∗(q, K, C) ≤ λ.

Proposition 5 says that if users have large enough news feeds and share sufficiently many stories

from their feeds, then the critical virality weight will be arbitrarily close to 1 − 1
2q . In particular,

no matter how precise the individual stories, every limit equilibrium admits a misleading steady

state when λ ≥ 1/2 provided K and C are large enough. But 1 − 1
2q is also a sharp lower bound

on the critical virality weight, so news-feed algorithms close enough to uniform sampling remain

immune to the possibility of misleading steady states even if we let users access and interact with

more and more social information.
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4 Platform Design

In this section, we provide several implications of our results for platform design. We first show

that if the platform can change the virality weight λ over time, then a simple policy can guarantee a

high viral accuracy in large societies. We then discuss when social learning outcomes on a platform

are robust to exogenous manipulation.

4.1 Changing Virality Weight Over Time

Our main model analyzed platform dynamics with a fixed virality weight and found a basic trade-

off: higher virality weights can improve the accuracy of informative steady states but can also

lead to misleading steady states. A natural question is whether sampling rules outside the class

we have considered can circumvent this trade-off and improve accuracy. We now show that a

simple modification can do so: letting the virality weight vary over time. This corresponds to

generating news feeds with different algorithms when an issue first emerges and after the discussion

has developed further.

To formalize this, let x be the viral accuracy at the informative steady state under the majority

rule when λ = 1. We will show that x is the best possible steady state viral accuracy that can

be reached with positive probability given any x and any fixed virality weight λ. With a fixed λ,

moreover, viral accuracy x can only be attained with positive probability when misleading steady

states are also reached with positive probability. By contrast, the following result says if the

platform can start with λ = 0 and switch to λ = 1 after some time, then there is a limit equilibrium

where viral accuracy in later periods is arbitrarily close to x with probability arbitrarily close to 1.

Proposition 6. Suppose λ = 0 for the first t0(n) periods and then λ = 1 for all subsequent periods.

We can choose a sequence of t0(n) such that σmaj is an equilibrium for n sufficiently large, and

given strategy σmaj we have x(n) → x in probability (as the number of agents n → ∞). The viral

accuracy x is the highest viral accuracy at any state given any fixed λ and any state-symmetric

strategy.

If the platform were to fix λ = 1 in all periods, then there is some strictly positive probability

that society converges to a misleading steady state. The key idea is that the platform can make the

probability of this bad outcome arbitrarily small by showing random news feeds (λ = 0) to a large
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enough number of agents in the early periods. These early agents have a very high probability

of generating a viral accuracy higher than 1/2 because the low virality weight lets independent

information accumulate. The platform then exploits this favorable initial condition and switches

to λ = 1 to generate stronger (and very likely correct) beliefs.

The proposition shows that by modifying news-feed algorithms to be dynamic in a simple way,

platforms can improve the accuracy of the content they show to users. This policy could provide

guidance for regulators concerned about the accuracy of content on platforms. Regulation could,

for example, limit how much platforms can show viral content early in the discussion of an issue but

then ease these restrictions after some time. The policy is also a potential approach for platforms

facing regulatory constraints requiring some level of accuracy.

Real-world platforms of course need not be limited to sampling rules from the particular class

we consider in this paper (time-varying or otherwise). The proposition demonstrates that showing

less viral content early in a learning process and more viral content later can improve accuracy, and

we expect this dynamic would extend to other sampling rules. We note that platforms could obtain

very high accuracy by learning the true state and then showing users exclusively stories matching

the state. This may be a helpful policy in some situations, but may be controversial or difficult to

implement in others. Our result suggests that high accuracy may also be attainable with carefully

designed content-neutral algorithms.

4.2 Robustness to Manipulation

We next ask when social learning outcomes on a platform are robust to manipulation. Suppose a

manipulator exogenously increases the popularity score of the incorrect stories on the platform in an

attempt to mislead. When λ < λ∗, learning outcomes are robust to a small amount of manipulation:

a one-time finite increase of some stories’ popularity scores does not change steady-state outcomes.

Moreover, we can bound the fraction of injected content needed to introduce a misleading steady

state. When λ ≥ λ∗, such manipulation may be more effective.

To model manipulation, suppose that with probability 1 − ι each agent i behaves as in our

baseline model. With probability ι, agent i does not get to play, the story si is not posted onto the

platform, and we instead increase the total popularity score of the incorrect stories on the platform

by C + 1 points (if any such stories exist). One interpretation is that ι fraction of the users on
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the platform are bots controlled by a manipulator who always shares incorrect stories. We assume

the existence of this manipulation is common knowledge, but the following result would also hold

if agents are unaware of the manipulation. This model of manipulated content gives an especially

simple bound on the robustness of the platform, but one can easily obtain similar bounds under

other assumptions.

We define a bound ι = 1−maxλx+(1−λ)q≤1/2
x

ϕσmaj (x) , which depends on λ via the inflow accuracy

function ϕσmaj(x). Since ϕσmaj(x) is a polynomial, this bound can be calculated by maximizing a

rational function.

Proposition 7. Suppose λ < λ∗. If ι < ι, there is no misleading steady state at any limit equilib-

rium.

The proposition gives a simple lower bound on how much incorrect content can be injected

onto a platform without introducing a misleading steady state. When this lower bound is large,

we can think of a platform as robust to manipulation campaigns. Conversely, when λ is close to

λ∗ even small amounts of incorrect content could have large impacts: recall from Corollary 1 that

arbitrarily small changes in news feed composition can have substantial impacts on accuracy.

This lower bound is often sharp, though it need not always be. Whether a misleading steady

state appears when ι reaches ι depends on whether the majority rule remains a limit equilibrium.

On a platform free from manipulation, Theorem 2 tells us the majority rule is the only limit

equilibrium when there are only informative steady states. But this may not be true in the presence

of manipulated content, as there can an informative steady state where news feed stories are most

likely correct, but they are still less accurate than private signals. So agents will deviate away from

the majority rule even before the ι threshold where a misleading steady state appears.

The proof relies on the fact that, as in the proof of Theorem 2, there can only be a misleading

steady state for an equilibrium strategy under parameters that also generate a misleading steady

state under the majority rule. The remainder of the argument checks for a misleading steady

state under the majority rule. Increasing ι is equivalent to rescaling the inflow accuracy function

ϕσmaj(x) downward by a constant factor 1 − ι, since manipulation never increases the popularity

score of the correct stories. This rescaling will create a misleading steady state when there is a

solution to (1 − ι)ϕσmaj(x) = x for x such that λx + (1 − λ)q ≤ 1/2. By straightforward algebra,
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the first such solution arises at the value x in this interval maximizing x
ϕσmaj (x) , and this happens

when ι = 1 − x = ι.

Note that even when ι is not large enough to create a misleading steady state, the manip-

ulation will still decrease viral accuracy at the informative steady state. When the maximum

maxλx+(1−λ)q≤1/2
x

ϕσmaj (x) is achieved at the value of x where λx + (1 − λ)q = 1/2, the informative

steady state will become misleading at the threshold level of ι. When the maximum is achieved

strictly below this x value, however, a new misleading steady state will emerge discontinuously at

the threshold level of ι.

When λ ≥ λ∗, platforms may be much more vulnerable to manipulation. If users are not aware

of the manipulation, then even a finite amount of injected content can make a misleading steady

state much more likely if that content arrives sufficiently early. The impact of manipulation is less

clear when agents are aware of the manipulations, but outcomes remain sensitive to even small

amounts of injected content.

5 Observable Virality

Our baseline model assumes that users do not observe or do not make inferences from the number

of times each story in their news feed has been shared. In practice, users on social-media platforms

usually do observe information about how many agents have shared, upvoted, or liked posts. In this

section, we consider a modification of our model where agents can observe some information about

the virality of the stories in their news feeds. In this new environment where agents can discriminate

between more and less viral stories, news feeds with enough viral content still generate misleading

steady states: we show that every limit equilibrium induces at least one strictly misleading steady

state, provided the platform shows a sufficiently large number of viral stories to each agent.

5.1 A Model Where Agents Observe Virality

Allowing agents to fully observe the virality of stories would be an interesting model, but presents

apparent technical challenges. The state of the platform would be described by the popularities of

all stories, and so the relevant state space grows very large. Similarly, the set of agent observations

grows large and strategies become very complicated objects. To avoid these obstacles, we instead
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consider a model where agents observe some partial information about stories’ virality.

As in the model from Section 2, there is an unknown binary state of nature ω ∈ {−1, 1}. There

are n agents randomly placed into a sequence, all starting with the common prior that the two

states are equally likely. Each agent i receives a binary private signal about the state, si ∈ {−1, 1}.

Each private signal is a news story that matches the state with probability q, where 0.5 < q < 1.

The platform has two different pools of stories: a regular story pool and a viral story pool.

After the state of nature is drawn but before the first agent acts, the regular story pool is initiated

with KR stories, each matching the state with probability q. The viral story pool is initiated with

another set of KV stories, each matching the state with some probability q′ ∈ (0, 1).

When each agent arrives, they automatically post their news story, adding it to the platform’s

regular story pool. They also see a regular news feed with KR stories drawn from the regular story

pool and a viral news feed with KV stories drawn from the viral story pool. (For simplicity, suppose

all sampling is with replacement.) Agents can distinguish between the two different news feeds,

so they can tell whether a given news story in their feed comes from the regular story pool or the

viral story pool. The agent then shares C stories from the regular news feed and C ′ stories from

the viral story feed, where C ≤ KR/2. For each shared story that matches the state, the agent

gets utility u > 0. Every time a story is shared from the regular news feed, there is some α > 0

chance that it goes viral: a signal with the same realization is added to the platform’s viral story

pool. Sharing stories from the viral news feed never creates additional viral stories.

The key difference between this model and the model from Section 2 is that we classify each

story on the platform as either “regular” or “viral” and provide each agent with two separate

news feeds that contain these two different types of stories. This is a stylized representation of

a social-media platform that highlights very popular stories in a special section, in addition to

showing users their ordinary news feeds. For example, X displays a selection of “trending” topics

in a separate sidebar, distinct from the news feed of regular tweets. Each time agents in our model

share a regular news story, there is some (possibly very small) chance that it becomes viral — in

the case of X, this corresponds to the algorithm designating a tweet as trending and showing it in

the trending sidebar to other users.
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5.2 Misleading Steady States with Large Viral Feeds

We begin by adapting the main definitions in our baseline model to the present environment.

We can define a mixed strategy in the game to be σ : {−1, 1} × {0, ..., KR} × {0, ..., KV } →

∆({0, 1, ..., C} × {0, 1, ..., C ′}), where σ(s, kR, kV ) maps from the realization of the private signal,

the number of positive stories in the regular news feed, and the number of positive stories in the

viral news feed to the possibly random numbers of positive stories shared from the regular feed and

the viral feed. Strategies must satisfy the relevant feasibility constraints in terms of the numbers

of available positive and negative stories in the two news feeds.

We focus on symmetric Bayesian Nash equilibria where all players use the same strategy and

this common strategy treats positive and negative stories symmetrically, which we call symmetric

equilibria. For fixed parameters q, q′, KR, KV , C, C ′, α, a mixed strategy σ∗ is a limit equilibrium if

there exists a sequence of symmetric equilibria (σ(j))∞
j=1 for finite societies with these parameters

and nj agents, where nj → ∞ and limj→∞ σ(j) = σ∗.

We define viral accuracy after person t moves as the fraction of stories in the viral story pool

that match the state, denoted by x(t). Suppose all individuals in an infinite society use the same

state-symmetric strategy σ. Then we get the stochastic process of viral accuracy (x(t))∞
t=1, and

we show variants of Proposition 2 and Theorem 1 in the appendix. We call a point x∗ such that

x(t) → x∗ with positive probability a steady state induced by σ, and this steady state is called

misleading if x∗ < 1/2.

The main message of Theorem 2 is that when news feeds show enough viral content, misleading

steady states will arise. The next result shows this continues to hold when agents partially observe

which stories are viral: as KV the size of the viral news feed grows sufficiently large, every limit

equilibrium must induce a misleading steady state where a strict majority of the stories in the

platform’s viral story pool are wrong. We now vary the composition of news feeds by changing the

size of the viral news feed rather than the virality weight parameter λ in the model from Section

2. A larger KV and a larger λ both lead to misleading steady states. So the overall lesson is that

rational agents can generate misleading steady states on platforms where the news-feed contents

depend strongly on others’ sharing, even when correct information arrives on the platform in every

period and even if agents make some distinctions between viral and non-viral stories.
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Theorem 3. Fix q, q′, C, C ′, α. For any KR large enough so that P[Binom(KR, 1 − q) ≥ C] > 1/2,

there exists some K̄V so that whenever KV ≥ K̄V , every limit equilibrium induces at least one

misleading steady state.

An additional assumption needed for Theorem 3 is that the regular news feed is large enough

to have at least a 50% chance of showing each agent C or more regular news stories that mismatch

the state. Similar to our model from Section 2, in this model misleading steady states arise from

rational agents sometimes sharing wrong regular stories, so we need to ensure enough of these

wrong stories exist in the regular news feed to be potentially shared and go viral.

6 Conclusion

We have developed a model of learning from social media where rational users share stories that

they believe are more likely to match the state. Users see news feeds, which depend on what

stories others share as well as how much weight the platform’s sampling algorithm places on these

sharing decisions. Showing more viral stories can help aggregate more information. But at a

critical threshold, a misleading steady state where users primarily see and share incorrect stories

discontinuously emerges.

We have focused on social-media platforms, but conclude by mentioning two other applications

of our analysis. First, our model could also be interpreted as describing offline information-sharing

dynamics. The parameter λ would then measure how frequently people communicate their personal

experiences or private information relative to passing along others’ experiences or information.

Second, related models have been used to describe product adoption dynamics when consumers use

simple heuristics (Smallwood and Conlisk, 1979). Our techniques suggest a path toward introducing

equilibrium behavior into such models.
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A Proofs

A.1 Proof of Proposition 1

Proof. Fixing n gives a symmetric finite game. So by Kakutani’s fixed point theorem, there exists

a symmetric BNE.

Now fix q, K, C, and λ. For each n, there exists a symmetric BNE σ(n). Because the space of

strategies σ is compact, we can choose a convergent subsequence. The limit of this subsequence is

a limit equilibrium.

A.2 Proof of Proposition 2

Proof. The proof applies a convergence result from stochastic approximation from Chapter 2 of

Borkar (2023). Suppose agents use strategy σ. Without loss of generality, we can condition on

ω = 1.

Let

Y = {y = (x, z) ∈ [0, 1]2}.

Recall ρt(si) is the popularity of signal si after agent t acts. For each t, define y(t) ∈ Y by

x(t) =
∑

si=1 ρt(si)
(C + 1)t and z(t) =

∑
si=1 1
t

.

The first entry of y(t) = (x(t), z(t)) measures the fraction of shares which are shares of signals with

realization 1 up to time t. The second entry measures the fraction of private signals which have

realization 1 up to time t.

We can write

y(t + 1) = y(t) + 1
t + 1 (ξ(t + 1) − y(t)) ,

where ξ(t + 1) is the random variable with first entry equal to the fraction of shared signals which

have realization 1 in period t + 1 and second entry is a binary indicator for whether st+1 = 1.

Following the notation of Borkar (2023), we write

h(y(t)) = E [ξ(t + 1) | y(t)] − y(t) and M(t + 1) = ξ(t + 1) − E [ξ(t + 1) | y(t)] .
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We can then decompose the change in the stochastic process y(t) into h(y(t)), which depends

deterministically on y(t), and M(t + 1), which is a martingale:

y(t + 1) = y(t) + 1
t + 1 (h(y(t)) + M(t + 1)) .

We would like to apply Theorem 2.1 of Chapter 2 of Borkar (2023), which requires the following

assumptions:

(A1) h is Lipschitz continuous.

(A2)
∑

t
1

t+1 = ∞ while ∑t
1

(t+1)2 < ∞.

(A3) E [M(t + 1) | y(t)] = 0 and {M(t)} are square-integrable with

E
[
∥M(t + 1)∥2 | y(t)

]
≤ κ(1 + ∥y(t)∥2)

a.s. for all n and some κ > 0.

(A4) ∥y(t)∥ remains bounded a.s.

Properties (A2) and (A4) are immediate. For (A3), the martingale property holds by the con-

struction of M(t) and the remaining properties hold because M(t) is bounded (independent of

t).

Property (A1) remains. Since −y(t) is Lipschitz continuous in y(t), we must check that

E [ξ(t + 1) | y(t)] is Lipschitz continuous in y(t).

Write σ1(s, k) for the expected number of “1” signals that strategy σ shares, when the agent’s

private signal is s and k signals in the sample are “1”. Write Pk(x, z, λ) for P[Binom(K, λx + (1 −

λ)z) = k], where Binom(k, p) is the binomial distribution with k trials and success probability p.

Then for t ≥ K, the conditional expectation of the random variable ξ1(t + 1) is equal to

1
C + 1

q +
∑

0≤k≤K

Pk(x(t), z(t), λ)(qσ1(1, k) + (1 − q)σ1(−1, k))

 .

This is a polynomial of degree at most K in x(t) and z(t), and therefore is Lipschitz continuous on

Y . The conditional expectation of ξ2(t + 1) is constant, and therefore Lipschitz continuous in Y as
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well.

For r = (r1, r2), we can define a continuous-time differential equation by letting

ṙ(t) = h(r(t)), t ≥ 0. (1)

An invariant set A of (1) is a set such that r(0) ∈ A implies r(t) ∈ A for all t ≥ 0. An invariant set

is internally chain transitive if for any r, r′ ∈ A, ϵ > 0 and T > 0, there exists r0 = r, r1, . . . , rn =

r′ ∈ A such that the trajectory of r(t) starting from r(0) = ri meets with an ϵ-neighborhood of

ri+1 at some time t ≥ T .

By Theorem 2.1 of Chapter 2 of Borkar (2023), the stochastic process y(t) converges to an

internally chain transitive invariant set of equation (1). Because r2(t) → q, any internally chain

transitive invariant set must be contained in [0, 1] × {q}. We claim that at any r contained in an

internally chain transitive invariant set A, we must have

dr1(t)
dt

= 0

when r(t) = r. Suppose an internally chain transitive invariant set A of (1) contains a point r at

which
dr1(t)

dt
> 0.

Letting r(0) = r, we can choose some t′ > 0 such that r1(t′) > r1(0) and

dr1(t)
dt

> 0

at t = t′. Now let r′ = r(t′). We have r′ ∈ A by invariance.

If we consider the trajectory r(t) beginning with r(0) = r′, we cannot have r1(t) fall below r1(0)

since ṙ1(0) > 0 and the sign of ṙ1(t) only depends on t through r1(t). For ϵ > 0 sufficiently small

this implies that the trajectory r(t) beginning with r(0) = r′ never enters an ϵ-neighborhood of r.

This contradicts the assumption that A is internally chain transitive.

If A contains a point r at which
dr1(t)

dt
< 0,
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we obtain a contradiction similarly. This shows the claim that

dr1(t)
dt

= 0

at all r contained in an internally chain transitive invariant set.

Values of r1(t) for which dr1(t)
dt = 0 correspond to the roots of a non-linear polynomial, and

therefore there are at most finitely many such values. Calling the set of such values X∗(1), we can

conclude that x(t) converges almost surely to x∗ ∈ X∗(1).

A.3 Proof of Theorem 1

We say a fixed point x∗ of ϕσ(x) is a touchpoint if there exists ϵ > 0 such that ϕσ(x) < x for all

x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ) or ϕσ(x) > x for all x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ).

Case (i): x∗ is a touchpoint.

The proof extends the arguments from Theorem 1 of Pemantle (1991). Suppose that ϕσ(x) > x

for all x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ). The other case is the same.

Fix v ∈ (0, 1
2) and v1 ∈ (v, 1

2). Choose γ > 1 such that γv1 < 1
2 . Define g(r) = re(1−r)/(2v1γ).

Then g(1) = 1 and g′(1) = 1 − 1/(2v1γ) < 0, so we can choose r0 ∈ (0, 1) with g(r0) > 1. Also

define

T (n) = en(1−r0)/(γv1).

Then

g(r0)n = rn
0 T (n)1/2 > 1.

Choose N such that γrN
0 < ϵ. Since T (1)1/2r0 = g(r0) > 1, we can find α > 0 such that

T (1)1/2−α > r0 and therefore T (n)1/2−αr−n
0 → ∞. Let τN = inf{j > T (N) : x(j − 1) < x∗ − rN

0 <

x(j)} (using the convention that τN = −∞ if there is no such j). For each n ≥ N , define

τn+1 = inf{j ≥ τn : x(j) > x∗ − rn+1
0 }.

So τn is the first time the stochastic process crosses x∗ − rn
0 .

We will show the probability that τn > T (n) for all n ≥ N is positive. Since x(t) → x∗ from
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below whenever τn > T (n) for all n ≥ N , this will complete the case.

Let z(t) be the fraction of private signals up to period t with realization si = 1. We first bound

the probability that z(t) is far from q. Define a function

ϕσ,z(x) := q +∑K
k=0 P[Binom(K, λx + (1 − λ)z) = k] · [q · σ(1, k) + (1 − q) · σ(−1, k)]

1 + C

to be the inflow accuracy when a fraction z of past private signals have value 1.

We begin by defining an event C under which the number of private signals with positive

realization is close to q for t sufficiently large. Let C1 be the event that for all n ≥ N and for all

t ≥ T (n),

ϕσ,z(t)(x) − x ≥ −1/T (n)1/2−α

on (x∗ − ϵ, x∗ + ϵ). Because ϕσ,z(x) − x is polynomial (in z and x) and is non-negative on this

interval when z = q, this holds for |z(t) − q| < B/T (n)1/2−α for some B > 0.

Suppose event C1 holds and τn > T (n). Then we have

j∑
t=τn

h1(y(t))/(t + 1) =
j∑

t=τn

(ϕσ,z(t)(x(t)) − x(t))/(t + 1)

≥ −
∞∑

m=n

1
T (m)1/2−α

∑
T (m)≤t<T (m+1)

1
t + 1 by the definition of C1

≥ −
∞∑

m=n

log(⌈T (m + 1)⌉) − log(⌈T (m)⌉)
T (m)1/2−α

≥ −
∞∑

m=n

(1 − r0
γv1

+ 1
)

· e−m(1/2−α)(1−r0)/(γv1)

= −
(1 − r0

γv1
+ 1

)
· e−n(1/2−α)(1−r0)/(γv1)

1 − e−(1/2−α)(1−r0)/(γv1) . (2)

We define µ =
(

1−r0
γv1

+ 1
)

· 1
1−e−(1/2−α)(1−r0)/(γv1) , so that the right-hand side is −µT (n)−(1/2−α).

Let C2 be the event that for all n ≥ N and for all t ≥ T (n),

ϕσ,z(t)(x) − x ≤ vγrn
0 (3)
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for all x ∈ [x∗ − γrn
0 , x∗]. Because ϕσ,z(x) − x is polynomial (in z and x) and

d(ϕσ,q(x) − x)
dx

(x∗) = 0,

we can choose B′ such that for all n ≥ N we have

ϕσ,z(x) − x ≤ vγrn
0

for x ∈ [x∗ − γrn
0 , x∗] whenever |z − q| < B′rn

0 (since we can bound the entries of the Hessian

of ϕσ,z(x) − x above by a constant on the rectangle [x∗ − γrN
0 , x∗] × [q − rN

0 , q + rN
0 ]). Because

rn
0 > T (n)1/2−α, this holds for |z(t) − q| < B′/T (n)1/2−α for some B′ > 0.

Define the event C = C1 ∩ C2 to be the intersection of these two events. The event C holds

when |z(t) − q| < min(B, B′)/T (n)1/2−α for all n ≥ N and all t ≥ T (n). By the Chernoff bound

and the inequalities t ≥ T (n) and q > 1 − q, the probability of |z(t) − q| > min(B, B′)/T (n)1/2−α is

at most 2e− min(B,B′)2t2α/(2q2). So the probability that the event C does not hold for some n ≥ N

and all t ≥ T (n) is at most

2
∞∑

n=N

∞∑
t=T (n)

2e− min(B,B′)2t2α/(2q2).

For N sufficiently large, this sum is approximately

∞∑
n=N

1
α

(
min(B, B′)2

2q2

)− 1
2α

Γ
( 1

2α
, T (n)2α min(B, B′)2/(2q2)

)

where Γ(s, x) is the incomplete Gamma function. Since Γ(s, x)/(xs−1e−x) → 1 as x → ∞, this sum

converges to zero as N → ∞. Increasing N if necessary, we can conclude that the event C has

positive probability. For the remainder of case (i), we condition on this event C .

Now let B be the event {infj>τn x(j) ≥ x∗ − γrn
0 }. We will bound the probability of this event

conditional on τn > T (n). Let Zm,n = ∑n−1
t=m M(t + 1) be the sum of the martingale parts of the

stochastic process. Because the differences M(t) are martingales with |M(t)| ≤ (C + 1)/(t + 1), we

have

E[Z2
m,∞] =

∞∑
t=m

E[M(t)2] ≤
∞∑

t=m

(
C + 1
t + 1

)2
≤ (C + 1)2

m
. (4)
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We have:

P [Bc | τn > T (n)] = P
[

inf
j>τn

x(j) < x∗ − γrn
0

∣∣∣∣ τn > T (n)
]

≤ P
[

inf
j>τn

Zτn,j < −(γ − 1)rn
0 + µT (n)−(1/2−α)

∣∣∣∣ τn > T (n)
]

by equation (2)

≤ E
[
Z2

τn,∞

∣∣∣ τn > T (n)
]

/((γ − 1)rn
0 − µT (n)−(1/2−α))2 by Chebyshev’s inequality

≤ (C + 1)2e−n(1−r0)/(v1γ)((γ − 1)rn
0 − µT (n)−(1/2−α))−2

by inequality (4) and the definition of T (n).

Recall that T (n)1/2−αr−n
0 → ∞, so for n sufficiently large

(γ − 1)rn
0 − µT (n)−(1/2−α) ≥ γ − 1

2 rn
0 .

We conclude that

P [Bc | τn > T (n)] ≤ (C + 1)2
(

γ − 1
2

)−2
g(r0)−2n.

This bounds the conditional probability of the event B not holding.

When the event B does hold and τn > T (n),

∑
T (n)<t<T (n+1)

x(t)<x∗

h1(y(t))/(t + 1) =
∑

T (n)<t<T (n+1)
x(t)<x∗

(ϕσ,z(t)(x(t)) − x(t))/(t + 1)

≤
∑

T (n)<t<T (n+1)
x(t)<x∗

vγrn
0 /(t + 1) by equation (3)

≤ (log⌈T (n + 1)⌉ − log⌈T (n)⌉)(vγrn
0 )

by the partial sums of the harmonic series

≤ (vγrn
0 )((1 − r0)/(γv1) + 1/T (n))

= (v/v1)(rn
0 − rn+1

0 ) + vγrn
0 /T (n).
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Now suppose B holds and τn > T (n) but τn+1 ≤ T (n + 1). Then

Zτn,τn+1 = x(τn+1) − x(τn) −
τn+1−1∑

t=τn

h1(y(t))/(t + 1)

≥ x(τn+1) − x(τn) −
∑

T (n)<t<T (n+1)
x(t)<x∗

h1(y(t))/(t + 1)

≥ rn
0 − rn+1

0 − ξn − (v/v1)(rn
0 − rn+1

0 ) − vγrn
0 /T (n) by the inequality above and definition of τn

= rn
0 (1 − r0)(1 − v/v1) − ξn − vγrn

0 /T (n),

where ξn is an error term since x(τn) may be larger than x∗ − rn
0 and ξ̃n = ξn + vγrn

0 /T (n). Since

the error term ξn is at most 1/T (n) and therefore is lower order than rn
0 , we have

rn
0 (1 − r0)(1 − v/v1) − ξ̃n

rn
0 (1 − r0)(1 − v/v1) → 1 (5)

as n → ∞.

Combining our bounds, we have:

P[τn+1 ≤ T (n + 1) | τn > T (n)] ≤ P [Bc | τn > T (n)] +

P
[
B, sup

τn+1
Zτn,τn+1 ≥ rn

0 (1 − r0)(1 − v/v1) − ξ̃n

∣∣∣∣∣ τn > T (n)
]

≤ (C + 1)2
(

γ − 1
2

)−2
g(r0)−2n +

E[Z2
τn,∞ | τn > T (n)]

(rn
0 (1 − r0)(1 − v/v1) − ξ̃n)2

by Chebyshev’s inequality

≤ (C + 1)2
(

γ − 1
2

)−2
g(r0)−2n + (C + 1)2T (n)−1

(rn
0 (1 − r0)(1 − v/v1) − ξ̃n)2

by inequality (4)

≤ (C + 1)2
(

γ − 1
2

)−2
g(r0)−2n+

(C + 1)2((1 − r0)(1 − v/v1))−2g(r0)−2n · rn
0 (1 − r0)(1 − v/v1) − ξ̃n

rn
0 (1 − r0)(1 − v/v1) .

We claim that the sum of these probabilities converges. The sum of the first terms converges

because g(r0) > 1. For the second term, recall that the fraction rn
0 (1−r0)(1−v/v1)−ξ̃n

rn
0 (1−r0)(1−v/v1) converges to 1.
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So the sum of the second terms also converges because g(r0) > 1.

We have

P[τn > T (n) for all n ≥ N ] = P[τN > T (N)]
∞∏

n=N

(1 − P[τn+1 ≤ T (n + 1) | τn > T (n)]).

On the right-hand side, each factor in the product is positive and

∞∑
n=N

P[τn+1 ≤ T (n + 1) | τn > T (n)]

is finite. By a standard result on infinite products, this implies the product is positive. So the

probability that τn > T (n) for all n ≥ N is positive, which implies that the probability π(x∗|σ) of

converging to x∗ is positive.

Case (ii): There exists ϵ > 0 such that ϕσ(x) > x for all x ∈ (x∗ − ϵ, x∗) and ϕσ(x) < x for all

x ∈ (x∗, x∗ + ϵ).

Our argument is based on the related result for generalized Pólya urns from Hill, Lane, and

Sudderth (1980). We begin with a lemma, which says that suitably changing a stochastic process

away from a neighborhood of a fixed point does not affect whether we converge to that fixed point

with positive probability:

Lemma 2. Suppose

ỹ(t + 1) = ỹ(t) + 1
t + 1

(
ξ̃(t + 1) − ỹ(t)

)
,

where the conditionally i.i.d. random variables ξ̃(t + 1) have the same conditional distribution as

ξ(t + 1) in a neighborhood U of (x∗, q), have the same support as ξ(t + 1) for all (x, z) ∈ (0, 1)2,

and have expectations E[ξ̃(t + 1)] that are Lipschitz continuous in (x, z). Then x(t) converges to x∗

with positive probability if and only if x̃(t) = ỹ1(t) does.

Proof. The stochastic process x(t) converges to x∗ with positive probability if and only if there exists

some T and some (x(T ), z(T )) reached with positive probability under y(t) such that starting with

initial condition (x(T ), z(T )), with positive probability x(t) → x∗ and (x(t), z(t)) ∈ U for t ≥ T .

Because the random variables ξ̃(t) have the same support as ξ(t) whenever x and z are interior,

the point (x(T ), z(T )) is reached with positive probability under ỹ(t) if and only if it is reached with
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positive probability under y(t). Because ξ̃(t) and ξ(t) agree on U , starting with initial condition

(x(T ), z(T )), with positive probability x̃(t) → x∗ and (x̃(t), z̃(t)) ∈ U for t ≥ T if and only if the

same holds for (x(t), z(t)). These conditions hold for some (x(T ), z(T )) if and only if x̃(t) converges

to x∗ with positive probability.

Now choose ξ̃(t) satisfying the conditions of the lemma, agreeing with ξ(t) in the second co-

ordinate, and such that the unique fixed point of the corresponding function ϕ̃σ(x) is x∗. To do

so, choose an open neighborhood U of (x∗, q) such that x∗ is the unique fixed point of ϕσ(x) with

(x, q) ∈ U . Let ξ̃(t) = ξ(t) on the closure U of U . For each z, let ξ̃(t) be constant in x outside of

the neighborhood U .

Then ξ̃(t) and ξ(t) have the same support for all interior x and z. Lipschitz continuity follows

from Lipschitz continuity of the expectations of ξ(t) in x and z, which we checked in the proof of

Proposition 2.

Since x∗ is the unique fixed point of ϕσ(x), by the same argument as in Proposition 2, we

have x̃(t) → x∗ almost surely. Note that this step uses Lipschitz continuity of E[ξ̃(t + 1)]. So by

Lemma 2, x(t) → x∗ with positive probability.

A.4 Proof of Lemma 1

Proof. If x > 1/2, then sampling accuracy is λx+(1−λ)q > 1/2 since q > 1/2 also. If x < 1/2 and

ϕσmaj(x) = x, then the sampling accuracy must be strictly less than 1/2. Otherwise, if sampling

accuracy is 1/2 or higher, then the majority rule implies ∑K
k=0 Pk(x, λ) · [q · σmaj(1, k) + (1 −

q) · σmaj(−1, k)] ≥ C/2 and so ϕσmaj(x) > 1/2. Finally, if x = 1/2 were a steady state, then its

sampling accuracy would be at least 1/2, so again by the same reason we would have ϕσmaj(x) > 1/2,

a contradiction.

A.5 Proof of Theorem 2

A.5.1 Preliminary Lemmas

We first state and prove three preliminary lemmas.

Lemma 3. Suppose σ is state symmetric, E[σ(1, k)] ≥ E[σ(−1, k)] for every 0 ≤ k ≤ K, and that

σ(1, K/2)(C) = 1, σ(−1, K/2)(0) = 1 if K is even. If sampling accuracy at x is weakly smaller than
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1/2, then ϕσmaj(x) ≤ ϕσ(x). If sampling accuracy at x is strictly smaller than 1/2 and σ ̸= σmaj,

then ϕσmaj(x) < ϕσ(x).

Proof. We have

ϕσmaj(x) =
q + PK/2(x, λ) · q · C +∑

k>K/2 Pk(x, λ) · C

1 + C

We first note that in a news feed with K/2 out of K positive stories, by assumption on σ it must

share C positive stories that match the private signal, so both strategies contribute q · C correct

shares in expectation.

For each k > K/2, by symmetry we have E[σ(1, k)] = C − E[σ(−1, K − k)] and E[σ(−1, k)] =

C − E[σ(1, K − k)].

We have

Pk(x, λ) · (q · E[σ(1, k)] + (1 − q) · E[σ(−1, k)]) + PK−k(x, λ) · (q · E[σ(1, K − k)] + (1 − q) · E[σ(−1, K − k)])

=Pk(x, λ) · (q · (C − E[σ(−1, K − k)]) + (1 − q) · (C − E[σ(1, K − k)]))

+ PK−k(x, λ) · (q · E[σ(1, K − k)] + (1 − q) · E[σ(−1, K − k)])

=Pk(x, λ) · C − Pk(x, λ) · (qE[σ(−1, K − k)] + (1 − q)E[σ(1, K − k)])

+ PK−k(x, λ) · (q · E[σ(1, K − k)] + (1 − q) · E[σ(−1, K − k)])

≥Pk(x, λ) · C − Pk(x, λ) · (qE[σ(−1, K − k)] + (1 − q)E[σ(1, K − k)])

+ PK−k(x, λ) · ((1 − q) · E[σ(1, K − k)] + q · E[σ(−1, K − k)])

using the fact that q > 1/2 and E[σ(1, K − k)] ≥ E[σ(−1, K − k)] by the hypothesis on σ.

Suppose x is weakly misleading, so λx + (1 − λ)q ≤ 1/2. Then PK−k(x, λ) ≥ Pk(x, λ) since

k > K/2. This shows when ω = 1, the expected number of positive stories shared by σ with a k

majority in the news feed is weakly larger than that shared by σmaj. So ϕσmaj(x) ≤ ϕσ(x).

Now suppose x strictly misleading, so λx + (1 − λ)q < 1/2. Then Pk(x, λ) < PK−k(x, λ) and

the final term is strictly larger than Pk(x, λ) · C except when E[σ(−1, K − k)] = E[σ(1, K − k)] = 0.

This shows we get ϕσmaj(x) < ϕσ(x) except when σ(−1, k) = σ(1, k) is the degenerate distribution

on 0 for any k < K/2, which by symmetry only happens when σ = σmaj.

Lemma 4. Suppose σ is state symmetric and σ(1, k)(C) = 1 for every k ≥ K/2. Then, ϕσ does
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not have any fixed point x with λx + (1 − λ)q > 1/2 and x ≤ q.

Proof. Suppose by way of contradiction that such a fixed point x exists. Let y = λx + (1 − λ)q

be the sampling accuracy, and note x ≤ y ≤ q, with y > 1/2. Expected number of positive stories

shared by each new agent when ω = 1 is:

q ·
K∑

k=0
Pk(x, λ) · E[σ(1, k)] + (1 − q) ·

K∑
k=0

Pk(x, λ) · E[σ(−1, k)].

We know E[σ(1, k)] = C ≥ E[σ(−1, k)] for each k ≥ K/2, and conversely E[σ(−1, k)] = 0 ≤

E[σ(1, k)] for each k < K/2. This means ∑K
k=0 Pk(x, λ) · E[σ(1, k)] ≥

∑K
k=0 Pk(x, λ) · E[σ(−1, k)].

Since q ≥ y > 1/2, this expected number of shared positive stories is at least

y ·
K∑

k=0
Pk(x, λ) · E[σ(1, k)] + (1 − y) ·

K∑
k=0

Pk(x, λ) · E[σ(−1, k)].

For each 0 ≤ k < K/2,

(1 − y) · PK−k(x, λ) = (1 − y) ·
(

K

k

)
yK−k(1 − y)k

≥ y ·
(

K

k

)
yk(1 − y)K−k,

so

(1 − y) · PK−k(x, λ) · E[σ(−1, K − k)] ≥ y · Pk(x, λ) · E[σ(−1, K − k)]

and the inequality is strict for k = 0 because y > 1/2 and σ(−1, K) must share C positive stories

as there are no negative stories in the news feed. So we have

y ·
K∑

k=0
Pk(x, λ) · E[σ(1, k)] + (1 − y) ·

K∑
k=0

Pk(x, λ) · E[σ(−1, k)]

=y ·
∑

k≥K/2
Pk(x, λ) · C + y ·

∑
k<K/2

Pk(x, λ) · E[σ(1, k)] + (1 − y) ·
∑

k>K/2
Pk(x, λ) · E[σ(−1, k)]

>y ·
∑

k≥K/2
Pk(x, λ) · C + y ·

∑
k<K/2

Pk(x, λ) · E[σ(1, k)] + y ·
∑

k<K/2
Pk(x, λ) · E[σ(−1, K − k)]

=y ·
∑

k≥K/2
Pk(x, λ) · C + y ·

∑
k<K/2

Pk(x, λ) · C
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where the last step uses the symmetry condition E[σ(1, k) + σ(−1, K − k)] = C for k < K/2. The

last expression is yC, thus ϕσ(x) > q+yC
1+C ≥ y+yC

1+C = y ≥ x. This contradicts x being a fixed

point. Hence there are no fixed points of ϕσ that satisfy both conditions in the statement of the

lemma.

Lemma 5. For each ϵ′, ϵ′′ > 0, p ∈ (0, 1), strategy σ∗ and 0 ≤ λ ≤ 1 with ϕλ
σ∗(x) − x ≥ 2ϵ′ for

every x with λx + (1 − λ)q ≤ p + 2ϵ′ (where ϕλ
σ∗ is the inflow accuracy function with virality weight

λ), there is some N and some δ > 0 so that for every σ with ∥σ − σ∗∥2 < δ and λ with |λ − λ| < δ,

we have Pσ,λ[λx(t) + (1 − λ)q ≥ p + ϵ′/2] > 1 − ϵ′′ for every t ≥ N .

Proof. Because ϕλ
σ(x) is polynomial in λ, σ, and x, there exists δ > 0 such that ϕλ

σ(x) − x ≥ ϵ′ for

every x with λx + (1 − λ)q ≤ p + ϵ′ when ∥σ∗ − σ∥2 < δ and |λ − λ| < δ. Shrinking δ if necessary,

we can also assume that λ is bounded away from zero when |λ − λ| < δ.

For the remainder of the proof, fix σ and λ in these neighborhoods. We will observe at the end

of the proof that the bounds we will prove are uniform in the choice of σ and λ.

Let p′ > p + ϵ′ be the largest number in (0, 1) such that

ϕσ(x) − x ≥ ϵ′/2 (6)

for all x satisfying λx + (1 − λ)q ≤ p′. Let N1 < N2 be positive integers with N2 ≥ bN1 for

some integer b > 1. We will first show that for N1 and N2 large enough, the probability that

λx(t) + (1 − λ)q < p′ for all t ∈ [N1, N2] is small. We will then show that if λx(t1) + (1 − λ)q > p′

for some N1 ≤ t1 < N2, then the probability that λx(N2) + (1 − λ)q < p + ϵ′/2 is small.

By the Chernoff bound applied to z(t) and compactness of the set of strategies σ under consid-

eration, we can choose a constant B > 0 independent of σ such that

max
x∈[0,1]

|ϕσ,z(t)(x) − ϕσ(x)| < ϵ′/4 (7)

with probability at least 1 − 2e−Bt for t sufficiently large.

Recall that we can decompose y(t) as

y(t + 1) = y(t) + h(y(t)) + M(t + 1),
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where h(y(t)) is deterministic and M(t + 1) is a martingale. We have |M(t)| < 2(C + 1)/t for all

t. So by Theorem C.7 from Appendix C of Borkar (2023), for any α > 0 and any t1 and t2,

P

 sup
t1<t<t2

∣∣∣∣∣∣
t∑

i=t1

M(i)

∣∣∣∣∣∣ > α

 ≤ 4e
− α2∑t2

i=t1
4(C+1)2/i2

. (8)

Consider the event E that λx(t) + (1 − λ)q < p′ for all N1 ≤ t ≤ N2. Suppose inequality (7)

holds for all N1 ≤ t < N2. Then we have

x(N2) − x(N1) =
N2−1∑
t=N1

ϕσ,z(t)(x(t)) − x(t)
t + 1 +

N2−1∑
t=N1

M(t + 1)

=
N2−1∑
t=N1

ϕσ,z(t)(x(t)) − ϕσ(x(t))
t + 1 +

N2−1∑
t=N1

ϕσ(x(t)) − x(t)
t + 1 +

N2−1∑
t=N1

M(t + 1)

≥
N2−1∑
t=N1

ϵ′/4 · 1
t + 1 +

N2−1∑
t=N1

M(t + 1) by inequalities (6) and (7)

≥ (ϵ′/4)(log(N2) − log(N1)) +
N2−1∑
t=N1

M(t + 1).

When event E holds, the right-hand side must be at most p′/λ. Taking b and therefore N2/N1

sufficiently large, we can assume that

(ϵ′/4)(log(N2) − log(N1)) > 2p′/λ.

By equation (8), the absolute value of the sum of martingales is greater than p′/λ with probability

at most

4e

− (p′/λ)2∑N2
i=N1

4(C+1)2/(i+1)2
≤ 4e

− (p′/λ)2N1N2
8(C+1)2(N2−N1) < 4e

− (p′/λ)2N1
8(C+1)2 .

Along with the Chernoff bound, this gives an upper bound on the probability of event E.

If event E does not hold, there exists some N1 ≤ t ≤ N2 such that λx(t)+(1−λ)q ≥ p′. Choose

t1 so that t1 − 1 is the largest such t.

Suppose λx(N2) + (1 − λ)q ≤ p + ϵ′/2. For N1 sufficiently large, this implies t1 ≤ N2. So we

must have

x(N2) − x(t1) ≤ ((p + ϵ′/2) − p′)/λ < −ϵ′/(2λ).
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On the other hand, when inequality (7) holds for all N1 ≤ t < N2,

x(N2) − x(t1) =
N2−1∑
t=t1

ϕσ,z(t)(x(t)) − x(t)
t + 1 +

N2−1∑
t=t1

M(t + 1)

=
N2−1∑
t=t1

ϕσ,z(t)(x(t)) − ϕσ(x(t))
t + 1 +

N2−1∑
t=t1

ϕσ(x(t)) − x(t)
t + 1 +

N2−1∑
t=t1

M(t + 1)

≥
N2−1∑
t=t1

ϵ′/4 · 1
t + 1 +

N2−1∑
t=t1

M(t + 1) by inequalities (6) and (7)

≥ (ϵ′/4)(log(N2) − log(t1)) +
N2−1∑
t=t1

M(t + 1).

Applying equation (8) with α = ϵ′/(2λ), the absolute value of the sum of martingales is greater

than ϵ′/(2λ) with probability at most

4e

− (ϵ′)2/(2λ)2∑N2
i=t1

4(C+1)2/(i+1)2
≤ 4e

− (ϵ′/λ)2N2t1
32(C+1)2(N2−t1) ≤ 4e

− (ϵ′/λ)2t1
32(C+1)2 .

When this does not hold and the Chernoff bounds apply, x(N2) − x(t1) is greater than −ϵ′/(2λ)

and therefore λx(N2) + (1 − λ)q > p + ϵ′/2 if N1 is sufficiently large. This gives an upper bound

on the probability that λx(N2) + (1 − λ)q ≤ p + ϵ′/2.

We conclude that

Pσ[λx(N2) + (1 − λ)q < p + ϵ′/2] ≤ 4e
− (p′/λ)2N1

8(C+1)2 +
N2−1∑

t=N1+1
4e

− (ϵ′/λ)2t

32(C+1)2 + 2
N2−1∑
t=N1

e−Bt

for N1 sufficiently large. Because the second and third terms are geometric series, we can choose

N1 sufficiently large so that this probability is less than ϵ′′ for all N2 ≥ bN1. Because λ is bounded

away from zero, we can make this choice uniformly in λ and σ (subject to the constraints |λ−λ| < δ

and ∥σ − σ∗∥2 < δ). So for N1 sufficiently large, we have

Pσ[λx(t) + (1 − λ)q ≥ p + ϵ′/2] > 1 − ϵ′′

for t ≥ N = bN1.
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A.5.2 Proof of Theorem 2

Proof. Part 1: Fix 0 < λ ≤ λ∗ and suppose σ∗ is a limit equilibrium.

Step 1: Either σ∗ = σmaj, or all fixed points of ϕσ∗ are strictly informative.

We verify that σ∗ satisfies the hypotheses of Lemma 3. Note σ∗ is the limit of a sequence of

symmetric BNEs (σ(i)), where every σ(i) is state symmetric. Also, in the i-th finite society under

the equilibrium σ(i), belief about {ω = 1} must be weakly higher after observing k positive stories

and s = 1 than k positive stories and s = −1 for every 0 ≤ k ≤ K. So by optimality of σ(i), we have

E[σ(i)(1, k)] ≥ E[σ(i)(−1, k)] for every i and every 0 ≤ k ≤ K. The limit σ∗ must also satisfy state

symmetry and E[σ∗(1, k)] ≥ E[σ∗(−1, k)] for every 0 ≤ k ≤ K. Also, when K is even, by the state

symmetry of the equilibrium σ(i) we know that a news feed with K/2 positive stories in society i

generates an equilibrium posterior belief that both states are equally likely. Thus, optimality of

σ(i) implies σ(i)(1, K/2)(C) = 1 and σ(i)(−1, K/2)(0) = 1. The limit σ∗ must then also satisfy

σ∗(1, K/2)(C) = 1, σ∗(−1, K/2)(0) = 1.

If ϕσ∗ has a strictly misleading fixed point and σ∗ ̸= σmaj, that is some x ∈ [0, 1] with λx +

(1 − λ)q < 1/2 and such that ϕσ∗(x) = x, then by Lemma 3 we get ϕσmaj(x) < x. But we also have

ϕσmaj(0) > 0, which means ϕσmaj has a strictly misleading fixed point in (0, x) by the intermediate-

value theorem, and further ϕσmaj will continue to have a nearby fixed point for nearby values of λ.

Since x ≤ 1/2, this implies for some λ′ < λ∗, ϕσmaj has a fixed point in [0, 1/2], which contradicts

the definition of λ∗.

If there is some x with λx + (1 − λ)q = 1/2 and such that ϕσ∗(x) = x, then by Lemma 3 we

get ϕσmaj(x) ≤ x. But since the sampling accuracy at x is exactly 1/2, every sample is as likely as

its mirror image, so the majority rule is expected to share at least C/2 correct stories out of C,

hence ϕσmaj(x) > 1/2 after accounting for the arrival of new stories that tend to match the true

state. This is a contradiction. Thus, every fixed point of ϕσ∗ must be strictly informative unless

σ∗ = σmaj.

Step 2: If λ < λ∗, ϕσ∗ only has fixed points in (q, 1]. If λ = λ∗, either σ∗ = σmaj or ϕσ∗ only

has fixed points in (q, 1].

We first show all fixed points of ϕσ∗ are strictly informative, except when λ = λ∗ and σ∗ = σmaj.

If λ < λ∗ and σ∗ = σmaj, by definition of λ∗ we know that all fixed points of ϕσ∗ are strictly
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informative. And if σ∗ ̸= σmaj, then by Step 1, all fixed points of ϕσ∗ are strictly informative. If

λ = λ∗ and σ∗ ̸= σmaj, again Step 1 implies all fixed points of ϕσ∗ are strictly informative.

We verify that, except when λ = λ∗ and σ∗ = σmaj, σ∗ is such that σ∗(1, k)(C) = 1 for

every k ≥ K/2, and thus satisfies the hypotheses of Lemma 4. Since all fixed points of ϕσ∗

are strictly informative, there exists some ϵ′ > 0 so that ϕσ∗(x) − x > 2ϵ′ for every x where

λx + (1 − λ)q ≤ 0.5 + 2ϵ′. Find some ϵ′′ > 0 so that

(0.5 + ϵ′/4)⌊K/2⌋+1 · (0.5 − ϵ′/4)K−⌊K/2⌋−1 · (1 − 3ϵ′′)
(0.5 + ϵ′/4)K−⌊K/2⌋−1 · (0.5 − ϵ′/4)⌊K/2⌋+1 · (1 − 3ϵ′′) + 3ϵ′′ > 1. (9)

Apply Lemma 5 to these ϵ′, ϵ′′ and p = 1/2 to find N and δ. Also, by the law of large numbers,

we may find N ′ so that P[|Binom(t, q)/t − q| > ϵ′/4] < ϵ′′ whenever t ≥ N ′, where Binom(t, q)

refers to a binomial random variable with t trials and q success probability. Since σ(i) → σ∗,

there exists I so that ∥σ(i) − σ∗∥2 < δ whenever i ≥ I. For all i ≥ I large enough, we must have

max(N, N ′)/(ni−K) < ϵ′′. But in the equilibrium σ(i) in society i, we know that agents’ equilibrium

belief about sampling accuracy for any position in {max(N, N ′), max(N, N ′)+1, ..., ni} assigns mass

at least 1−2ϵ′′ to the region [0.5+ϵ′/4, 1]. This is because if we have both λx(t)+(1−λ)q ≥ 0.5+ϵ′/2

and |z(t) − q| < ϵ′/4, then we also have λx(t) + (1 − λ)z(t) ≥ 0.5 + ϵ′/4 — the former event has

probability at least 1 − ϵ′′ when t ≥ N and latter event has probability at least 1 − ϵ′′ when

t ≥ N ′. Hence, equilibrium belief about sampling accuracy for a uniformly random position in

{K+1, K+2, ..., max(N, N ′), max(N, N ′)+1, ..., ni} assigns mass at least 1−3ϵ′′ to the same region.

Thus, the expression on the LHS of Equation (9) gives a lower bound on the the posterior likelihood

ratio of ω = 1 and ω = −1 after seeing a sample containing k positive stories in equilibrium σ(i),

for any k > K/2. Hence, by optimality, σ(i)(1, k)(C) = 1 for every k > K/2. Also, for any belief

about sampling accuracy, a sample with k = K/2 is uninformative, so if K/2 is an integer then

σ(i)(1, K/2)(C) = 1 by optimality. Thus we see for all large enough j, σ(i)(1, k)(C) = 1 for every

k ≥ K/2, hence the same must hold for the limit σ∗.

Combining the conclusion of Lemma 4 (which rules out steady states at or lower than q with a

sampling accuracy strictly higher than 1/2) with the argument at the beginning of Step 2 (which

rules out steady states with sampling accuracy 1/2 or lower), we have completed this step.

Step 3: σ∗ = σmaj.
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By Step 2, we just need to establish this when ϕσ∗ only has fixed points in (q, 1]. By state

symmetry it suffices to show that σ∗(−1, k)(C) = 1 for every k > K/2. Since ϕσ∗ only has fixed

points in (q, 1], there exists some ϵ′ > 0 so that ϕσ∗(x) − x ≥ 2ϵ′ for every x where λx + (1 − λ)q ≤

q + 2ϵ′. Find some ϵ′′ > 0 so that

(q + ϵ′/4)⌊K/2⌋+1 · (1 − q − ϵ′/4)K−⌊K/2⌋−1 · (1 − 3ϵ′′)
(q + ϵ′/4)K−⌊K/2⌋−1 · (1 − q − ϵ′/4)⌊K/2⌋+1 · (1 − 3ϵ′′) + 3ϵ′′ >

q

1 − q
. (10)

Apply Lemma 5 to these ϵ′, ϵ′′ and p = q to find N and δ. Also, by the law of large numbers, we

may find N ′ so that P[|Binom(t, q)/t − q| > ϵ′/4] < ϵ′′ whenever t ≥ N ′, where Binom(t, q) refers to

a binomial random variable with t trials and q success probability. Since σ(i) → σ∗, there exists I so

that ∥σ(i) −σ∗∥2 < δ whenever i ≥ I. For all i ≥ I large enough, by the same arguments as in Step

2, the expression on the LHS of Equation (10) gives a lower bound on the the posterior likelihood

ratio of ω = 1 and ω = −1 after seeing a sample containing k positive stories in equilibrium σ(i) in

society i, for any k > K/2. So even if the private signal is s = −1, the ω = 1 state is still strictly

more likely, and σ(i)(−1, k)(C) = 1 by optimality. So we also have in the limit σ∗(−1, k)(C) = 1

for every k > K/2.

Part 2: For λ < λ∗, σmaj has a unique steady state.

For K odd, we have

ϕσmaj(x) =
q + C

∑
k>K/2 Pk(x, λ)
1 + C

.

By straightforward algebra, we can show that

ϕ′
σmaj(x) = CλK

1 + C
P
[
Binom (K − 1, λx + (1 − λ)q) = K − 1

2

]
.

If λ = 0, then ϕ′
σmaj(x) is constant in x, so ϕσmaj(x) cannot intersect y = x multiple times. If λ > 0,

then ϕ′
σmaj(x) is strictly decreasing in x ∈ (1

2 , 1], so ϕσmaj(x) is strictly concave for x ∈ (1
2 , 1]. Since

ϕσmaj(0) > 0, at the first fixed point x∗ with ϕσmaj(x∗) = x∗, we must have ϕ′
σmaj(x∗) ≤ 1. We have

x∗ > 1/2 by Part 1, so strict concavity of ϕσmaj(x) in (1
2 , 1] ensures that there are no fixed points

larger than x∗. There is a unique informative steady state.

50



For K even, we have

ϕσmaj(x) =
q + qC

∑
k≥K/2 P (k, λx + (1 − λ)q) + (1 − q)C∑k≥(K/2)+1 P (k, λx + (1 − λ)q)

1 + C
.

So

ϕ′
σmaj(x) = CλK

1 + C
·
(

qP
[
Binom (K − 1, y) = K

2 − 1
]

+ (1 − q)P
[
Binom (K − 1, y) = K

2

])
,

where y = λx + (1 − λ)q. The term in parentheses is proportional to

g(y) = (q(1 − y) + (1 − q)y)(y(1 − y))K/2−1.

For λ > 0, the derivative ∂g
∂x has the same sign as the derivative

∂g

∂y
= (y(1 − y))K/2−2((K/2 − 1)(2y − 1)(q(2y − 1) − y) − (2q − 1)(1 − y)y),

which is strictly negative for y ∈ (1
2 , 1).

Since y ∈ (1
2 , 1) whenever x ∈ (1

2 , 1), we conclude that ϕσmaj(x) is strictly concave for x ∈ (1
2 , 1)

if λ > 0. By the same arguments as before, there is a unique informative steady state.

Part 3: Now, suppose λ > λ∗ and suppose σ∗ is a limit equilibrium.

Step 1: ϕσ∗ must have a weakly misleading fixed point.

If not, then there exists some ϵ > 0 so that ϕσ∗(x)−x > ϵ for every x where λx+(1−λ)q ≤ 0.5+ϵ.

By repeating the arguments in Part 1, Steps 2 and 3, we conclude σ∗ = σmaj.

But we show σmaj has a strictly misleading fixed point for every λ > λ∗. By the definition of

λ∗, we can choose some λ′ with λ∗ ≤ λ′ < λ such that there exists a strictly misleading fixed point

x′ under σmaj at λ′ (we get “strictly” because by Lemma 1, 1/2 is not a fixed point of σmaj and all

fixed points in [0, 1/2) are strictly misleading). We rewrite the inflow accuracy function ϕσ(x) as

ϕσ(x, λ) to make explicit its dependence on λ.

Observe ϕσ(x, λ) only depends on x and λ through the value of λx + (1 − λ)q. We can define x

by

λx + (1 − λ)q = λ′x′ + (1 − λ′)q.
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Since λ′ < λ and x′ < q, this equality implies that x > x′. For x′ to be a strictly misleading fixed

point under the majority rule we must have λ′x′ + (1 − λ′)q < 1
2 , and therefore x < 1

2 as well.

So

ϕσmaj(x, λ) = ϕσmaj(x′, λ′) = x′,

where the second inequality holds because x′ is a fixed point under σmaj and λ′. So we conclude

that ϕσmaj(x, λ) < x. Since ϕσmaj(−1, λ) > 0, by the intermediate value theorem there is some fixed

point of ϕσmaj between 0 and x. Since x < 1
2 , this is a strictly misleading fixed point, contradiction.

Note that since ϕσ∗(0) > 0, the first weakly misleading fixed point of ϕσ∗ is stable at least from

the left, so it is also a weakly misleading steady state.

Step 2: ϕσ∗ cannot have a fixed point with a sampling accuracy of exactly 1/2.

Each σ(i), by optimality, has the property that E[σ(i)(1, k)] ≥ E[σ(i)(−1, k)] for every 0 ≤ k ≤ K.

So we must have E[σ∗(1, k)] ≥ E[σ∗(−1, k)] for each 0 ≤ k ≤ K. Suppose λx + (1 − λ)q = 1/2 and

ϕσ∗(x) = x. For each 0 ≤ k < K/2, we get

Pk(x, λ) · [q · E[σ∗(1, k] + (1 − q) · E[σ∗(−1, k)]] + PK−k(x, λ) · [q · E[σ∗(1, K − k)] + (1 − q) · E[σ∗(−1, K − k)]]

=Pk(x, λ) · [q · E[σ∗(1, k)] + (1 − q) · E[σ∗(−1, k)] + q · E[σ∗(1, K − k)] + (1 − q) · E[σ∗(−1, K − k)]]

since Pk(x, λ) = PK−k(x, λ)

=Pk(x, λ) · [q · E[σ∗(1, k)] + (1 − q) · E[σ∗(−1, k)] + q · (C − E[σ∗(−1, k)]) + (1 − q) · (C − E[σ∗(1, k)])]

=Pk(x, λ) · [C + (2q − 1) · E[σ∗(1, k)] − (2q − 1)E[σ∗(−1, k)]]

≥Pk(x, λ) · C because E[σ∗(1, k)] ≥ E[σ∗(−1, k)] and 2q − 1 > 0

≥Pk(x, λ) · [C/2] + PK−k(x, λ) · [C/2]

Also, if K/2 is an integer, we have E[σ∗(1, K/2)]+E[σ∗(−1, K/2)] = C and E[σ∗(1, K/2)] ≥ E[σ∗(−1, K/2)],

so q > 1 − q implies q · E[σ∗(1, K/2)] + (1 − q) · E[σ∗(−1, K/2)] ≥ C/2. Thus, we conclude
∑K

k=0 Pk(x, λ) ·

[q · E[σ∗(1, k)] + (1 − q) · E[σ∗(−1, k)]] ≥ C/2. So

ϕσ∗(x) := q +∑K
k=0 Pk(x, λ) · [q · E[σ∗(1, k)] + (1 − q) · E[σ∗(−1, k)]]

1 + C
≥ q + C/2

1 + C
> 1/2

since q > 1/2. But this means λϕσ∗(x) + (1 − λ)q > 1/2, contradiction.
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A.6 Proof of Proposition 3

Proof. Let λ < λ′ < λ∗ and suppose that x∗ is a steady state under λ. We want to show that there

exists a steady state (x′)∗ > x∗ under λ′.

As in the proof of Part 3 of Theorem 2, let ϕσ(x, λ) be the inflow accuracy function with its

dependence on λ. By monotonicity, ϕσmaj(x, λ) is strictly increasing in λ when x > q. By Theorem

2, we have x∗ > q and therefore

x∗ = ϕσmaj(x∗, λ) < ϕσmaj(x∗, λ′).

Since ϕσmaj(1, λ′) < 1, by the intermediate value theorem there exists (x′)∗ ∈ (x∗, 1) such that

ϕσmaj((x′)∗, λ′) = (x′)∗.

This is a steady state under λ′ that is greater than x∗.

A.7 Proof of Proposition 4

Proof. Fix some K, and let λ∗(q, C) be the critical virality value for (K, C, q). Write ϕσmaj(x; λ, q, C)

for the inflow accuracy function, emphasizing its dependence on the parameters.

First, note that if λ∗(q, C) is finite, then at every λ ≥ λ∗(q, C), ϕσmaj(x; λ, q, C) has a strictly

misleading steady state.

Part 1: λ∗(q, C) increases when q increases. We have q 7→ ϕσmaj(x; λ, q, C) is always

strictly increasing. For K odd, we may write ϕσmaj(x; λ, q, C) =
q+
∑K

k=(K+1)/2 Pk(x,λ)·C
1+C . For any

p′ > p, we can think of the experiment of tossing K coins each with a probability p′ of landing

heads as the experiment of first tossing K coins each with a probability p of landing heads, and

then independently flipping each tail to a head with some probability h so that p + (1 − p)h = p′.

This shows that ∑K
k=(K+1)/2 Pk(x, λ) is strictly increasing in λx + (1 − λ)q (since the possibility of

changing some tails to heads can only increase the total number of heads in the experiment), so

it is weakly increasing in q. Also, the numerator of ϕσmaj(x; λ, q, C) contains the term q, so this

shows the entire numerator is strictly increasing in q. For K even, we may write ϕσmaj(x; λ, q, C) =
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q+[qPK/2(x,λ)+
∑K

k=(K/2)+1 Pk(x,λ)]·C
1+C . For any fixed q < 1, qPK/2(x, λ) +∑K

k=(K/2)+1 Pk(x, λ) is strictly

increasing in λx + (1 − λ)q. This is because the possibility of changing some heads to tails keeps

outcomes where k ≥ (K/2) + 1 in this same class, while outcomes with k = K/2 have a positive

probability of changing to the class k ≥ (K/2) + 1, thus contribution 1 instead of q < 1 to the

sum. Hence qPK/2(x, λ) + ∑K
k=(K/2)+1 Pk(x, λ) is weakly increasing in q, and the numerator of

ϕσmaj(x; λ, q, C) is strictly increasing in q.

Suppose λ∗(q, C) = ∞ and ϕσmaj(x; λ, q, C) has no root in x ∈ [0, 1/2] for any λ ∈ [0, 1]. Since

ϕσmaj(0; λ, q, C) > 0, by continuity this means for every λ ∈ [0, 1], ϕσmaj(x; λ, q, C) > x for each

x ∈ [0, 1/2]. For any q′ > q, we have ϕσmaj(x; λ, q′, C) > ϕσmaj(x; λ, q, C) > x for every x ∈ [0, 1/2]

and λ ∈ [0, 1]. So again, λ∗(q′, C) = ∞.

Now suppose λ∗(q, C) is finite. We know also that λ∗(q, C) > 0 since ϕσmaj(x; λ, q, C) has no

fixed point in x ∈ [0, 1/2] when λ is near enough 0. If we have ϕσmaj(x′; λ∗(q, C), q, C) < x′ for any

x′ ∈ [0, 1/2], then by continuity there is some 0 < λ < λ∗(q, C) that still has ϕσmaj(x′; λ, q, C) < x′,

which means ϕσmaj(x; λ, q, C) has a root in x ∈ [0, 1/2) by the intermediate-value theorem. This

contradicts the definition of λ∗(q, C). So we must instead have ϕσmaj(x; λ∗(q, C), q, C) ≥ x for every

x ∈ [0, 1/2]. This means for every q′ > q, ϕσmaj(x; λ∗(q, C), q′, C) > x for every x ∈ [0, 1/2], that

is ϕσmaj(x; λ∗(q, C), q′, C) has no fixed point in [0, 1/2]. This means that ϕσmaj(x; λ∗(q, C), q′, C)

does not have a strictly misleading steady state. So either λ∗(q′, C) = ∞, or λ∗(q′, C) is finite but

λ∗(q′, C) > λ∗(q, C).

Part 2: λ∗(q, C) increases when C decreases. If C ′ < C, then ϕσmaj(x; λ, q, C ′) >

ϕσmaj(x; λ, q, C) at every x where λx + (1 − λ)q ≤ 1/2. To see this, first suppose K is odd. Then at

such x,
∑K

k=(K+1)/2 Pk(x, λ) ≤ 1/2, and we have

d

dC

q +∑K
k=(K+1)/2 Pk(x, λ) · C

1 + C
=
∑K

k=(K+1)/2 Pk(x, λ) · (1 + C) − (q +∑K
k=(K+1)/2 Pk(x, λ) · C)

(1 + C)2

=
∑K

k=(K+1)/2 Pk(x, λ) − q

(1 + C)2 < 0

using the fact that q > 1/2.

If instead K is even, then we have Pk(x, λ) ≤ PK−k(x, λ) for every k ≥ (K/2) + 1. This means∑K
k=(K/2)+1 Pk(x, λ) ≤ 1

2 · [1 − PK/2(x, λ)], so then qPK/2(x, λ) + ∑K
k=(K/2)+1 Pk(x, λ) < q since
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q > 1/2. We have:

d

dC

(
q + [qPK/2(x, λ) +∑K

k=(K/2)+1 Pk(x, λ)] · C

1 + C

)

=
[qPK/2(x, λ) +∑K

k=(K/2)+1 Pk(x, λ)] · (1 + C) − (q + [qPK/2(x, λ) +∑K
k=(K/2)+1 Pk(x, λ)] · C)

(1 + C)2

=
qPK/2(x, λ) +∑K

k=(K/2)+1 Pk(x, λ) − q

(1 + C)2 < 0

Suppose λ∗(q, C) = ∞ and ϕσmaj(x; λ, q, C) has no root in x ∈ [0, 1/2] for any λ ∈ [0, 1]. Since

ϕσmaj(0; λ, q, C) > 0, by continuity this means for every λ ∈ [0, 1], ϕσmaj(x; λ, q, C) > x for each x

with λx + (1 − λ)q ≤ 1/2. For any C ′ < C, we have ϕσmaj(x; λ, q, C ′) > ϕσmaj(x; λ, q, C) > x for

every x with λx + (1 − λ)q ≤ 1/2 and λ ∈ [0, 1]. That is, ϕσmaj(x; λ, q, C ′) does not have a strictly

misleading fixed point for any λ ∈ [0, 1], which means λ∗(q, C ′) = ∞.

Now suppose λ∗(q, C) is finite. Again, we have λ∗(q, C) > 0 and ϕσmaj(x; λ∗(q, C), q, C) ≥ x for

every x ∈ [0, 1/2] by similar arguments as before. This means for every C ′ < C, ϕσmaj(x; λ∗(q, C), q, C ′) >

x for every x with λx + (1 − λ)q ≤ 1/2, that is ϕσmaj(x; λ∗(q, C), q, C ′) has no strictly misleading

steady state. So either λ∗(q, C ′) = ∞, or λ∗(q, C ′) is finite but λ∗(q, C ′) > λ∗(q, C).

Part 3: Comparative statics in K. Now, fix q and C. For simplicity, denote ϕσmaj(x; λ, q, K, C)

by ϕ(x; λ, K), and let p := λx + (1 − λ)q. Then, P
(K)
k (x, λ) =

(K
k

)
pk(1 − p)K−k. We can rewrite:

P
(K+1)
k (x, λ) = p · P

(K)
k−1(x, λ) + (1 − p)P (K)

k (x, λ). (11)

By the same arguments as in Part 1 and Part 2, it suffices to show that for 0 < λ ≤ 1 and

for every x such that λx + (1 − λ)q < 1/2:

• If K is odd, then ϕ(x; λ, K + 1) > ϕ(x; λ, K)

• If K + 1 is even, then ϕ(x; λ, K + 1) > ϕ(x; λ, K + 2)

• For any K, ϕ(x; λ, K) > ϕ(x; λ, K + 2)

Case 1: K is odd (K to K + 1).

Note that

ϕ(x; λ, K) =
q +∑K

k= K+1
2

P
(K)
k (x, λ) · C

1 + C
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and

ϕ(x; λ, K + 1) =
q + q · P

(K+1)
K+1

2
(x, λ) · C +∑K+1

k= K+3
2

P
(K+1)
k (x, λ) · C

1 + C

Applying Equation (11), we have

K+1∑
k= K+3

2

P
(K+1)
k (x, λ) = p

K+1∑
k= K+3

2

P
(K)
k−1(x, λ) + (1 − p)

K+1∑
k= K+3

2

P
(K)
k (x, λ)

= p
K∑

k= K+1
2

P
(K)
k (x, λ) + (1 − p)

K∑
k= K+3

2

P
(K)
k (x, λ)

= p · P
(K)
K+1

2
(x, λ) +

K∑
k= K+3

2

P
(K)
k (x, λ).

Then,

ϕ(x; λ, K) − ϕ(x; λ, K + 1)

=
−q · P

(K+1)
K+1

2
(x, λ) · C +

[∑K
k= K+1

2
P

(K)
k (x, λ) −

∑K+1
k= K+3

2
P

(K+1)
k (x, λ)

]
· C

1 + C

=
−q · P

(K+1)
K+1

2
(x, λ) · C +

[
P

(K)
K+1

2
(x, λ) − p · P

(K)
K+1

2
(x, λ)

]
· C

1 + C

=
−q · P

(K+1)
K+1

2
(x, λ) · C + (1 − p) · P

(K)
K+1

2
(x, λ) · C

1 + C

=

(
−q + 1

2

)
· P

(K+1)
K+1

2
(x, λ) · C

1 + C
< 0, (using (1 − p) · P

(K)
K+1

2
(x, λ) = 1

2P
(K+1)
K+1

2
(x, λ))

since q > 1
2 .

Case 2: K + 1 is even (K + 1 to K + 2).

Note that

ϕ(x; λ, K + 1) =
q + q · P

(K+1)
K+1

2
(x, λ) · C +∑K+1

k= K+3
2

P
(K+1)
k (x, λ) · C

1 + C

and

ϕ(x; λ, K + 2) =
q +∑K+2

k= K+3
2

P
(K+2)
k (x, λ) · C

1 + C
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As in the first case, we have

K+2∑
k= K+3

2

P
(K+2)
k (x, λ) = p · P

(K+1)
K+1

2
(x, λ) +

K+1∑
k= K+3

2

P
(K+1)
k (x, λ).

Therefore,

ϕ(x; λ, K + 1) − ϕ(x; λ, K + 2)

=
(q − p) · P

(K+1)
K+1

2
(x, λ) · C

1 + C
> 0,

since q > λx + (1 − λ)q = p for all x ∈ [0, 1/2) and λ > 0.

Case 3: K to K + 2 for odd K.

Combining results from Case 1 and Case 2,

ϕ(x; λ, K) − ϕ(x; λ, K + 2) = ϕ(x; λ, K) − ϕ(x; λ, K + 1) + ϕ(x; λ, K + 1) − ϕ(x; λ, K + 2)

=

(
−q + 1

2

)
· P

(K+1)
K+1

2
(x, λ) · C + (q − p) · P

(K+1)
K+1

2
(x, λ) · C

1 + C

=

(
−p + 1

2

)
· P

(K+1)
K+1

2
(x, λ) · C

1 + C
> 0,

if p = λx + (1 − λ)q < 1
2 .

Case 4: K + 1 to K + 3 for even K + 1.

Combining results from Case 2 and Case 1,

ϕ(x; λ, K + 1) − ϕ(x; λ, K + 3) = ϕ(x; λ, K + 1) − ϕ(x; λ, K + 2) + ϕ(x; λ, K + 2) − ϕ(x; λ, K + 3)

=
(q − p) · P

(K+1)
K+1

2
(x, λ) · C

1 + C
+

(
−q + 1

2

)
· P

(K+3)
K+3

2
(x, λ) · C

1 + C
.

We have P
(K+1)
K+1

2
(x, λ) ≥ P

(K+3)
K+3

2
(x, λ), so this expression is weakly larger than

(
−q + 1

2

)
· P

(K+3)
K+3

2
(x, λ) · C

1 + C
+

(q − p) · P
(K+3)
K+3

2
(x, λ) · C

1 + C
=

(1
2 − p) · P

(K+3)
K+3

2
(x, λ) · C

1 + C
> 0
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when p = λx + (1 − λ)q < 1/2.

A.8 Proof of Proposition 5

Proof. To show that λ∗(q, K, C) > 1− 1
2q for any q, K, C, we prove that ϕσmaj(x) does not have fixed

points in [0, 1/2] when λ ≤ 1 − 1
2q . We have λx + (1 − λ)q ≥ (1 − λ)q ≥ 1

2 . This means that for K

odd, ∑K
k=(K+1)/2 Pk(x, λ) ≥ 1/2. For K even, we have q · PK/2(x, λ) +∑K

k=(K/2)+1 Pk(x, λ) > 1/2.

So in both cases, the numerator of ϕσmaj(x) is at least q+C/2, which means ϕσmaj(x) ≥ q+C/2
1+C > 1/2

since q > 1/2. This shows ϕσmaj(x) > x for every x ∈ [0, 1/2].

Next, fix any 1/2 < q < 1 and any λ > 1 − 1
2q . Let 0 < x′ < 1/2 be any number such that

λx′ +(1−λ)q < 1/2 (such x′ exists by the bound on λ). We find integers K and C so that whenever

K ≥ K, C ≥ C, we get ϕσmaj(x′; q, K, C, λ) < x′. Since x′ < 1/2 and since ϕσmaj(0; q, K, C, λ) > 0,

we know that ϕσmaj(·; q, K, C, λ) has a fixed point in (0, 1/2) by the intermediate-value theorem.

This implies λ∗(q, C, K) ≤ λ.

To construct K and C, let ϵ = x′/2. By the law of large numbers, we can find K so that

whenever K ≥ K, the probability that a binomial distribution with K trials and success probability

λx′ + (1 − λ)q < 1/2 has strictly fewer than K/2 successes is larger than 1 − ϵ. Thus, whenever

K ≥ K, ϕσmaj(x′; q, K, C, λ) ≤ q+ϵC
1+C . Now, increasing K further if necessary, we can find C large

enough so that for all C ≥ C, we have q+ϵC
1+C < 2ϵ. Whenever K ≥ K and C ≥ C, we have

ϕσmaj(x′; q, K, C, λ) < 2ϵ = x′ as desired.

A.9 Proof of Proposition 6

Proof. We first show that we can choose t0(n) such that σmaj is an equilibrium for n sufficiently

large and x(n) → x in probability. The main step is the following lemma.

Lemma 6. Suppose λ = 0 for the first t0 periods and then λ = 1 for all subsequent periods. There

exists a number t̄ and a function n̄(t) so that for any t0 ≥ t̄ and n ≥ n̄(t0), σmaj is an equilibrium

in a society with n agents. Given any ϵ > 0, there exists a number t̂ and a function n̂(t) so that for

any t0 ≥ t̂ and n ≥ n̂(t0), we have |x(n) − x| < ϵ under strategy σmaj with probability at least 1 − ϵ.

Proof. We first show the second claim. Let ϵ > 0. When λ = 0 in all periods, the function ϕσmaj(x)

is constant with value strictly greater than q. So there is a unique steady state x > q that is
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informative. We will bound x(t0) − x.

By the Chernoff bound applied to z(t), for any δ > 0 we can choose a constant B > 0 such that

|z(t) − q| < δ

with probability at least 1 − 2e−Bt. So we can choose t̂′ such that this holds for all t ≥ t̂′ with

probability at least 1 − ϵ/4. Now taking δ sufficiently small and t̂ sufficiently large (compared to

t̂′), by the law of large numbers we have |x(t0) − x| < ϵ/2 with probability at least 1 − ϵ/2 for any

t0 ≥ t̂.

Now for each t0 ≥ t̂, consider the infinite-horizon stochastic process x(t) that starts with t0

periods of λ = 0 and subsequently continued with λ = 1 and σ = σmaj. We know x(t) converges

almost surely as t → ∞ from Theorem 2.1 of Chapter 2 of Borkar (2023), which applies as in

Proposition 2 because
∞∑

t=t0

1
t

= ∞.

We next show the steady state reached is x with probability at least 1 − ϵ.

We can condition on the event |x(t0) − x| < ϵ/2, which occurs with probability at least 1 − ϵ/2.

We claim that given this event, with probability at least 1 − ϵ/2 there do not exist any t2 > t1 > t0

such that x(t1) > x − ϵ/2 and x(t2) < x − ϵ.

We have ϕ1
σmaj(x) > x (where the superscript on ϕ denotes λ = 1) since x > q. So shrinking ϵ

if necessary, we can choose δ > 0 so that

ϕ1
σmaj(x) > x + δ (12)

for x ∈ [x − ϵ, x]. If there exist t2 > t1 > t0 such that x(t1) > x − ϵ/2 and x(t2) < x − ϵ, then

increasing t1 if necessary we can assume that x(t) ≤ x for all t1 ≤ t ≤ t2. (If necessary, increase t0

so that we cannot have x(t) > x and x(t + 1) < x − ϵ when t ≥ t0.)

Applying the Chernoff bound to z(t) again, we can choose a constant B > 0 such that

max
x∈[0,1]

|ϕ1
σmaj,z(t)(x) − ϕ1

σmaj(x)| < δ (13)
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with probability at least 1 − 2e−Bt for t sufficiently large. Increasing t0 if necessary, we can assume

the inequality (13) holds for all t ≥ t0 with probability at least 1 − ϵ/4. We also condition on this

event.

As in the proof of Lemma 5, we can write y(t) as

y(t + 1) = y(t) + h(y(t)) + M(t + 1),

where h(y(t)) is deterministic and M(t + 1) is a martingale. We have |M(t)| < 2(C + 1)/t for all

t. So by Theorem C.7 from Appendix C of Borkar (2023), for any α > 0 and any t1,

P

 sup
t2∈(t1,∞)

∣∣∣∣∣∣
t2∑

i=t1

M(i)

∣∣∣∣∣∣ > α

 ≤ 4e
− α2∑∞

i=t1
4(C+1)2/i2

. (14)

We have

x(t2) − x(t1) =
t2−1∑
t=t1

ϕσ,z(t)(x(t)) − x(t)
t + 1 +

t2−1∑
t=t1

M(t + 1)

=
t2−1∑
t=t1

ϕσ,z(t)(x(t)) − ϕσ(x(t))
t + 1 +

t2−1∑
t=t1

ϕσ(x(t)) − x(t)
t + 1 +

t2−1∑
t=t1

M(t + 1)

≥ −
t2−1∑
t=t1

δ · 1
t + 1 +

t2−1∑
t=t1

δ · 1
t + 1 +

t2−1∑
t=t1

M(t + 1) by inequalities (12) and (13)

=
t2−1∑
t=t1

M(t + 1).

Recall that x(t2) − x(t1) ≤ −ϵ/2. So given t1, inequality (14) with α = ϵ/2 states that the

probability that

x(t2) − x(t1) ≥
t2−1∑
t=t1

M(t + 1)

for any t2 is at most 4e
− ϵ2∑∞

i=t1
16(C+1)2/i2

. Increasing t0 if necessary, we can assume that the sum of

these probabilities over all t1 ≥ t0 is at most ϵ/4, proving our claim.

Combining our bounds, we conclude that x(t) ≥ x − ϵ for all t ≥ t0 with probability at least

1 − ϵ. Since x is the only steady state in this region, we must have x(t) → x with probability at

least 1 − ϵ. So there is some n̂(t0) so that for all n ≥ n̂(t0), we get |x(n) − x| < ϵ/2 under strategy
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σmaj with probability at least 1 − ϵ/2.

To complete the proof, we show the first claim that the majority rule σmaj is an equilibrium when

t0 and n are sufficiently large. Note that when x(t) = x, the majority rule gives a strictly higher

payoff than any other pure strategy. By continuity, find ϵ > 0 so that if the event {|x(t) − x| < ϵ}

happens with probability at least 1 − ϵ, then the majority rule still gives a strictly higher payoff

than any other pure strategy. Using the second part of the claim just proved, find t̂ and n̂(t) so

that for any t0 ≥ t̂ and n ≥ n̂(t0), we have |x(n) − x| < ϵ/2 under strategy σmaj with probability

at least 1 − ϵ/2. Set t̄ = t̂. For each t0 ≥ t̄, let n̄(t0) be large enough so that n̂(t0)/n̄(t0) < ϵ/2.

When the total number of agents is n ≥ n̄(t0), an agent in a uniformly random position has at

least 1 − ϵ/2 chance of being in position n̂(t0) or later, and if they are in such positions they have

at least 1 − ϵ/2 chance of facing a current viral accuracy x(t) with |x(t) − x| < ϵ/2 when all others

use the strategy σmaj. Thus σmaj is the agent’s best response.

We can now complete the proof that we can choose t0(n) such that σmaj is an equilibrium for

n sufficiently large and x(n) → x in probability. Take any decreasing sequence ϵ(k) → 0. We will

construct two increasing sequences t
(k)
0 and n(k) inductively. Given t

(1)
0 , ..., t

(m)
0 and n(1), ..., n(m), we

can apply Lemma 6 to find numbers t
(m+1)
0 and n(m+1) so that for t

(m+1)
0 and for any n ≥ n(m+1),

|x(n) − x| < ϵ(m+1) under strategy σmaj with probability at least 1 − ϵ(m+1) and σmaj is an equi-

librium. It is without loss to assume t
(m+1)
0 > max{t

(1)
0 , ..., t

(m)
0 } and n(m+1) > max{n(1), ..., n(m)}

(increasing them if necessary). Now for each n, find the largest n(k) so that n ≥ n(k) and let

t0(n) = t
(k)
0 (if n < n(1), then set t0(n) = 0). This ensures (provided n ≥ n(1)) that for this choice

of t0(n), we have σmaj as an equilibrium and this equilibrium induces P[|x(n)−x| < ϵ(k)] > 1− ϵ(k).

We now prove the final statement in the proposition. By Lemma 4, we have x > q. Fix any

virality weight λ′ and state-symmetric strategy σ and suppose there is a steady state x∗ > x with

time-invariant virality weight λ′ and strategy σ. By Theorem 1, we have ϕλ′
σ (x) = x.

We claim that ϕλ=λ′

σmaj (x∗) ≥ x∗. Recall that

ϕσ(x) = q +∑K
k=0 Pk(x, λ) · [q · E[σ(1, k)] + (1 − q) · E[σ(−1, k)]]

1 + C
.
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For each k ≥ K/2,

Pk(x∗, λ′)·[q·E[σ(1, k)]+(1−q)·E[σ(−1, k)]]+PK−k(x∗, λ′)·[q·E[σ(1, K−k)]+(1−q)·E[σ(−1, K−k)]]

is maximized by setting σ = σmaj because σ is state-symmetric and Pk(x∗, λ′) > PK−k(x∗, λ′). This

verifies the claim.

Because x∗ > q, by monotonicity ϕλ
σmaj(x∗) is strictly increasing in λ and therefore ϕλ=1

σmaj(x) ≥

ϕλ=λ′

σmaj (x). Combining our inequalities, ϕλ=1
σmaj(x) > ϕλ=λ′

σ (x) = x. Since ϕλ=1
σmaj(1) < 1, by the

intermediate value theorem, we must have a fixed point of ϕλ=1
σmaj between x∗ and 1. But this

contradicts the definition of x, completing the proof.

A.10 Proof of Proposition 7

Proof. Suppose

ι < ι = 1 − max
λx+(1−λ)q≤ 1

2

x

ϕσmaj(x)

and σ∗ is a limit equilibrium.

By optimality, we must have E[σ(1, k)] ≥ E[σ(−1, k)] for every 0 ≤ k ≤ K and σ(1, K/2)(C) =

1, σ(−1, K/2)(0) = 1 if K is even. So Lemma 3 implies that ϕσmaj(x) ≤ ϕσ∗(x) for all x ≤ 1
2 .

If x∗ is a misleading steady state under σ∗ with ι fraction of bots, then we must have λx∗ +

(1 − λ)q ≤ 1
2 and

(1 − ι)ϕσ∗(x∗) = x∗.

Since ϕσmaj(x∗) ≤ ϕσ∗(x∗), this means

ι ≥ 1 − x∗

ϕσmaj(x∗) .

But

ι < 1 − max
λx+(1−λ)q≤ 1

2

x

ϕσmaj(x) ≤ 1 − x∗

ϕσmaj(x∗) ,

giving a contradiction. We conclude there is no such x∗.
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A.11 Proof of Theorem 3

First, we establish a number of preliminary properties of the model with observable virality from

Section 5. The first result (similar to Proposition 2) shows that given any state-symmetric strategy

σ, the induced viral accuracy process x(t) converges with probability 1.

Proposition 8. Given a state-symmetric strategy σ, there is a finite set of steady states X∗ ⊆ (0, 1)

such that when all agents use σ, almost surely x(t) → x∗ for some x∗ ∈ X∗.

Proof. Suppose all agents use the strategy σ. Without loss of generality, condition on ω = 1. Let

Y = {y = (x, v, z) ∈ [0, 1]3}. For each t, let y(t) ∈ Y be defined so that x(t) is the fraction of

positive stories in the viral news pool, v(t) is the size of the viral news pool divided by t · C, and

z(t) is the fraction of positive stories in the regular news pool. We can write

y(t + 1) = y(t) + 1
v(t) · t

· (ξ(t + 1) − y(t)),

where the first coordinate of ξ(t + 1) is
(

v(t)·t
v(t)·t+m

m
C

)
ς +

(
1 − v(t)·t

v(t)·t+m
m
C

)
x(t) with m being the

number of the C shared regular stories in period t + 1 that became viral and ς the fraction of these

newly viral stories that are positive (when m = 0, the first term vanishes, and we can define ς = 1).

The second coordinate of ξ(t + 1) is v(t) + v(t) t
t+1

(
m
C − v(t)

)
. The third coordinate of ξ(t + 1) is(

v(t)·t
t+1

)
· 1{st+1 = 1} +

(
1 − v(t)·t

t+1

)
· z(t).

Write h(y(t)) = E[ξ(t + 1) | y(t)] − y(t) and M(t + 1) = ξ(t + 1) − E[ξ(t + 1) | y(t)]. We then

have y(t + 1) = y(t) + 1
v(t)·t · (h(y(t)) + M(t + 1)), and we note that Theorem 2.1 of Chapter 2 of

Borkar (2009) applies to this process (see Section 2.2 of Borkar (2009)) with stochastic step sizes

provided we can show:

(A1) h is Lipschitz continuous.

(A2) With probability 1, ∑t
1

v(t)·t = ∞ while ∑t
1

(v(t)·t)2 < ∞.

(A3) E[M(t + 1) | y(t)] = 0 and {M(t)} are square-integrable with E[∥M(t + 1)∥2 | y(t)] ≤

κ(1 + ∥y(t)∥2) a.s. for all t and some κ > 0.

(A4) ∥y(t)∥ remains bounded a.s.

(A2) obtains by law of large numbers and (A4) is clear. For (A3), the martingale property

holds by the construction of M(t) and the remaining properties hold because M(t) is bounded
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(independent of t).

For (A1), the Lipschitz continuity of the second and third coordinates of E[ξ(t+1) | y(t)] in y(t)

are clear. For the first coordinate, note that conditional on any m ≥ 1, the expectation E[ς | m] is

the inflow accuracy function evaluated at y(t), which is a polynomial function (and hence Lipschitz

continuous) in x(t) and z(t). The distribution of m, the number of shared stories that go viral in

period t + 1, does not depend on y(t). Therefore, the first coordinate of E[ξ(t + 1) | y(t)] is also

Lipschitz continuous in y(t).

By Theorem 2.1 of Chapter 2 of Borkar (2009), the y(t) process converges to a compact con-

nected internally chain transitive invariant set of the differential equation ṙ(t) = h(r(t)). This

internally chain transitive invariant set must be a subset of [0, 1] × {α} × {q}, for the law of large

numbers implies that v(t) → α and z(t) → q almost surely. For the same reason as in the proof

of Proposition 2, at any point r in the invariant set we have dr1(t)
dt = 0 when r(t) = r. But fixing

r2(t) = α and r3(t) = q, the values of r1(t) such that dr1(t)
dt = 0 are the roots of a non-linear

polynomial, so there are finitely many such values.

In light of Proposition 8, let π(· | σ) be the distribution over steady states generated by a state-

symmetric strategy σ. We define the inflow accuracy function ϕσ(x) to be the expected fraction of

the C stories shared from the regular news feed that match the state, when current viral accuracy

is x and exactly q fraction of the regular story pool is correct. So,

ϕσ(x) :=
∑

s∈{−1,1}
∑KR

kR=0
∑KV

kV =0 E[σR(s, kR, kV )] · P[s | ω = 1] · P[Binom(KR, q) = kR] · P[Binom(KV , x) = kV ]
C

,

where E[σR(s, kR, kV )] refers to the expected number of positive regular stories shared by the mixed

action σ(s, kR, kV ).

Since P[Binom(KR, q) = KR] and P[Binom(KR, q) = 0] are both positive-probability events,

the feasibility of the strategy σ implies the strict inequalities 0 < ϕσ(x) < 1 for every x ∈ [0, 1]. It is

also clear that ϕσ is a polynomial function of its argument. The next result, analogous to Theorem

1, shows that fixed points of ϕσ that are stable from at least one side must be steady states.

Theorem 4. We have π(x∗ | σ) > 0 if ϕσ(x∗) = x∗ and there exists some ϵ > 0 so that either

(a) ϕσ(x) < x for all x ∈ (x∗, x∗ + ϵ), or (b) ϕσ(x) > x for all x ∈ (x∗ − ϵ, x∗). Conversely, for

x∗ ∈ [0, 1], we have π(x∗ | σ) > 0 only if ϕσ(x∗) = x∗.
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Proof. The proof is similar to the proof of Theorem 1, except we need to account for randomness

in the size of the viral story pool over time and randomness in the number of shared stories that

go viral in each period, and there is a different equation that defines the viral accuracy function.

We say a fixed point x∗ of ϕσ(x) is a touchpoint if there exists ϵ > 0 such that ϕσ(x) < x for all

x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ) or ϕσ(x) > x for all x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ).

Case (i): x∗ is a touchpoint.

The proof extends the arguments from Theorem 1 of Pemantle (1991). Suppose that ϕσ(x) > x

for all x ̸= x∗ in (x∗ − ϵ, x∗ + ϵ). The other case is the same.

Fix w ∈ (0, 1
2) and w1 ∈ (w, 1

2). Choose γ > 1 such that γw1 < 1
2 . Define g(r) = re(1−r)/(2w1γ).

Then g(1) = 1 and g′(1) = 1 − 1/(2w1γ) < 0, so we can choose r0 ∈ (0, 1) with g(r0) > 1. Also

define

T (n) = en(1−r0)/(γw1).

Then

g(r0)n = rn
0 T (n)1/2 > 1.

Choose N such that γrN
0 < ϵ. Since T (1)1/2r0 = g(r0) > 1, we can find χ > 0 such that

T (1)1/2−χ > r0 and therefore T (n)1/2−χr−n
0 → ∞. Let τN = inf{j > T (N) : x(j − 1) < x∗ − rN

0 <

x(j)}, using the convention that τN = −∞ if there is no such j. For each n ≥ N , define

τn+1 = inf{j ≥ τn : x(j) > x∗ − rn+1
0 }.

So τn is the first time the stochastic process crosses x∗ − rn
0 .

We will show the probability that τn > T (n) for all n ≥ N is positive. Since x(t) → x∗ from

below whenever said event holds (since x(t) converges with probability 1), this will complete the

case.

We first bound the probability that z(t) is far from q. Define a function

ϕσ,z(x) :=
∑

s∈{−1,1}
∑KR

kR=0
∑KV

kV =0 E[σ(s, kR, kV )] · P[s | ω = 1] · P[Binom(KR, z) = kR] · P[Binom(KV , x) = kV ]
C

to be the inflow accuracy when a fraction z of past private signals have value 1.
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We begin by defining an event C under which z(t) is close to q for t sufficiently large and v(t)

is close to α for t sufficiently large. Let C1 be the event that for all n ≥ N and for all t ≥ T (n),

ϕσ,z(t)(x) − x ≥ −1/T (n)1/2−χ

on (x∗ − ϵ, x∗ + ϵ). Because ϕσ,z(x) − x is polynomial (in z and x) and is non-negative on this

interval when z = q, this holds for |z(t) − q| < B/T (n)1/2−χ for some B > 0.

Note that the first coordinate of h(y(t)) = E[ξ(t+1) | y(t)]−y(t) can be written as E[( v(t)·t
v(t)·t+mt+1

mt+1
C )·

(ςt+1 − x(t)) | y(t)], where v(t) is measurable with respect to y(t) and mt+1 is independent of ςt+1.

Therefore we have h1(y(t)) = E[ v(t)·t
v(t)·t+mt+1

mt+1
C | v(t)] · (ϕσ,z(t)(x(t)) − x(t)). Choose ϵ > 0 small

enough so that 0 < α − ϵ < α + ϵ < 1, and that supt≥N,v∈[α−ϵ,α+ϵ] E[ t
v·t+mt+1

mt+1
C ] < w1/w < 1,

increasing N if necessary. (This is possible because for all v close enough to α and t large enough,

the expectation is close to 1 as E[mt+1/C] = α.) Let D := supt≥N,v∈[α−ϵ,α+ϵ] E[ t
v·t+mt+1

mt+1
C ]. Let

C ′
1 be the event that |v(t) − α| < ϵ for all t ≥ T (N).

Suppose events C1 and C ′
1 hold and τn > T (n). Then we have

j∑
t=τn

h1(y(t))/(v(t) · t) =
j∑

t=τn

{
E[ v(t) · t

v(t) · t + mt+1

mt+1
C

| v(t)] · (ϕσ,z(t)(x(t)) − x(t))
}

/(v(t) · t)

≥ −
∞∑

k=n

1
T (k)1/2−χ

∑
T (k)≤t<T (k+1)

E[ v(t)·t
v(t)·t+mt+1

· mt+1
C | v(t)]

v(t) · t
by the definition of C1

≥ −D ·
∞∑

k=n

log(⌈T (k + 1)⌉) − log(⌈T (k)⌉)
T (k)1/2−χ

by the definition of C ′
1

≥ −D ·
∞∑

k=n

(1 − r0
γw1

+ 1
)

· e−k(1/2−χ)(1−r0)/(γw1)

= −D ·
(1 − r0

γw1
+ 1

)
· e−n(1/2−χ)(1−r0)/(γw1)

1 − e−(1/2−χ)(1−r0)/(γw1) . (15)

We define µ = D ·
(

1−r0
γw1

+ 1
)

· 1
1−e−(1/2−χ)(1−r0)/(γv1) , so that the right-hand side is −µT (n)−(1/2−χ).

Let C2 be the event that for all n ≥ N and for all t ≥ T (n),

ϕσ,z(t)(x) − x ≤ wγrn
0 (16)
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for all x ∈ [x∗ − γrn
0 , x∗]. Because ϕσ,z(x) − x is polynomial (in z and x) and

d(ϕσ,q(x) − x)
dx

(x∗) = 0,

we can choose B′ such that for all n ≥ N we have

ϕσ,z(x) − x ≤ wγrn
0

for x ∈ [x∗ − γrn
0 , x∗] whenever |z − q| < B′rn

0 (since we can bound the entries of the Hessian

of ϕσ,z(x) − x above by a constant on the rectangle [x∗ − γrN
0 , x∗] × [q − rN

0 , q + rN
0 ]). Because

rn
0 > T (n)1/2−χ, this holds for |z(t) − q| < B′/T (n)1/2−χ for some B′ > 0.

Define the event C = C1 ∩C ′
1 ∩C2 to be the intersection of these three events. The event C holds

when |z(t) − q| < min(B, B′)/T (n)1/2−χ for all n ≥ N and all t ≥ T (n). By the Chernoff bound

and the inequalities t ≥ T (n) and q > 1 − q, the probability of |z(t) − q| > min(B, B′)/T (n)1/2−χ is

at most 2e− min(B,B′)2t2χ/(2q2). So the probability that the event C does not hold for some n ≥ N

and all t ≥ T (n) is at most

2
∞∑

n=N

∞∑
t=T (n)

2e− min(B,B′)2t2χ/(2q2).

For N sufficiently large, this sum is approximately

∞∑
n=N

1
χ

(
min(B, B′)2

2q2

)− 1
2χ

Γ
( 1

2χ
, T (n)2χ min(B, B′)2/(2q2)

)

where Γ(s, x) is the incomplete Gamma function. Since Γ(s, x)/(xs−1e−x) → 1 as x → ∞, this sum

converges to zero as N → ∞. Increasing N if necessary, we can conclude that the event C1 ∩C2 has

positive probability. Clearly the same is also true for C1 ∩C ′
1 ∩C2, as v(t) and z(t) are independent.

For the remainder of case (i), we condition on this event C .

Now let B be the event {infj>τn x(j) ≥ x∗ − γrn
0 }. We will bound the probability of this event

conditional on τn > T (n). Let Zk,n = ∑n−1
t=k M(t + 1) be the sum of the martingale parts of the

stochastic process. Because the differences M(t) are martingales with |M(t)| ≤ 1/(t · (α − ϵ) + 1)
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on the event C ′
1, we have

E[Z2
k,∞] =

∞∑
t=k

E[M(t)2] ≤
∞∑

t=k

( 1
t · (α − ϵ) + 1

)2
≤ 1

k(a − ϵ)2 . (17)

We have:

P [Bc | τn > T (n)] = P
[

inf
j>τn

x(j) < x∗ − γrn
0

∣∣∣∣ τn > T (n)
]

≤ P
[

inf
j>τn

Zτn,j < −(γ − 1)rn
0 + µT (n)−(1/2−χ)

∣∣∣∣ τn > T (n)
]

by equation (15)

≤ E
[
Z2

τn,∞

∣∣∣ τn > T (n)
]

/((γ − 1)rn
0 − µT (n)−(1/2−χ))2 by Chebyshev’s inequality

≤ (α − ϵ)−2e−n(1−r0)/(w1γ)((γ − 1)rn
0 − µT (n)−(1/2−χ))−2

by inequality (17) and the definition of T (n).

Recall that T (n)1/2−χr−n
0 → ∞, so for n sufficiently large

(γ − 1)rn
0 − µT (n)−(1/2−χ) ≥ γ − 1

2 rn
0 .

We conclude that

P [Bc | τn > T (n)] ≤ (α − ϵ)−2
(

γ − 1
2

)−2
g(r0)−2n.

This bounds the conditional probability of the event B not holding.

When the event B does hold and τn > T (n),
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∑
T (n)<t<T (n+1)

x(t)<x∗

h1(y(t))/(v(t) · t) =
∑

T (n)<t<T (n+1)
x(t)<x∗

{
E[ v(t) · t

v(t) · t + mt+1

mt+1
C

| v(t)] · (ϕσ,z(t)(x(t)) − x(t))
}

/(v(t) · t)

≤
∑

T (n)<t<T (n+1)
x(t)<x∗

Dwγrn
0 /(t) by definition of C1’ and equation (16)

≤ (log⌈T (n + 1)⌉ − log⌈T (n)⌉)(Dwγrn
0 )

by the partial sums of the harmonic series

≤ (Dwγrn
0 )((1 − r0)/(γw1) + 1/T (n))

= (Dw/w1)(rn
0 − rn+1

0 ) + Dwγrn
0 /T (n).

Now suppose B holds and τn > T (n) but τn+1 ≤ T (n + 1). Then

Zτn,τn+1 = x(τn+1) − x(τn) −
τn+1−1∑

t=τn

h1(y(t))/(v(t) · t)

≥ x(τn+1) − x(τn) −
∑

T (n)<t<T (n+1)
x(t)<x∗

h1(y(t))/(v(t) · t)

≥ rn
0 − rn+1

0 − ξn − D(w/w1)(rn
0 − rn+1

0 ) − Dwγrn
0 /T (n) by the inequality above and definition of τn

= rn
0 (1 − r0)(1 − D(w/w1)) − ξn − Dwγrn

0 /T (n),

where ξn is an error term since x(τn) may be larger than x∗ −rn
0 and ξ̃n = ξn +wγrn

0 /T (n). (Recall

0 < D(w/w1) < 1.) Since the error term ξn is at most 1/T (n) and therefore is lower order than rn
0 ,

we have
rn

0 (1 − r0)(1 − Dw/w1) − ξ̃n

rn
0 (1 − r0)(1 − Dw/w1) → 1 (18)

as n → ∞.
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Combining our bounds, we have:

P[τn+1 ≤ T (n + 1) | τn > T (n)] ≤ P [Bc | τn > T (n)] +

P
[
B, sup

j
Zτn,j ≥ rn

0 (1 − r0)(1 − Dw/w1) − ξ̃n

∣∣∣∣∣ τn > T (n)
]

≤ (α − ϵ)−2
(

γ − 1
2

)−2
g(r0)−2n +

E[Z2
τn,∞ | τn > T (n)]

(rn
0 (1 − r0)(1 − Dw/w1) − ξ̃n)2

by Chebyshev’s inequality

≤ (α − ϵ)−2
(

γ − 1
2

)−2
g(r0)−2n + (α − ϵ)−2T (n)−1

(rn
0 (1 − r0)(1 − Dw/w1) − ξ̃n)2

by inequality (4)

≤ (α − ϵ)−2
(

γ − 1
2

)−2
g(r0)−2n+

(α − ϵ)−2((1 − r0)(1 − Dw/w1))−2g(r0)−2n · rn
0 (1 − r0)(1 − Dw/w1) − ξ̃n

rn
0 (1 − r0)(1 − Dw/w1) .

We claim that the sum of these probabilities converges. The sum of the first terms converges

because g(r0) > 1. For the second term, recall that the fraction rn
0 (1−r0)(1−Dw/w1)−ξ̃n

rn
0 (1−r0)(1−Dw/w1) converges to

1. So the sum of the second terms also converges because g(r0) > 1.

We have

P[τn > T (n) for all n ≥ N ] = P[τN > T (N)]
∞∏

n=N

(1 − P[τn+1 ≤ T (n + 1) | τn > T (n)]).

On the right-hand side, each factor in the product is positive and

∞∑
n=N

P[τn+1 ≤ T (n + 1) | τn > T (n)]

is finite. By a standard result on infinite products, this implies the product is positive. So the

probability that τn > T (n) for all n ≥ N is positive, which implies that the probability π(x∗|σ) of

converging to x∗ is positive.

Case (ii): There exists ϵ > 0 such that ϕσ(x) > x for all x ∈ (x∗ − ϵ, x∗) and ϕσ(x) < x for all

x ∈ (x∗, x∗ + ϵ).

We begin with a lemma, which says that suitably changing a stochastic process away from a
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neighborhood of a fixed point does not affect whether we converge to that fixed point with positive

probability.

Lemma 7. Consider a process y(t) = (x(t), v(t), z(t)) valued in [0, 3]3 satisfying the conditions in

the proof of Proposition 8. Suppose

ỹ(t + 1) = ỹ(t) + 1
ṽ(t) · t

(ξ̃(t + 1) − ỹ(t)),

where the conditionally i.i.d. random variables ξ̃(t + 1) have the same conditional distributions

as ξ(t + 1) in a neighborhood U of (x∗, α, q), have the same support as ξ(t + 1) for all (x, v, z) ∈

(0, 1)3, have expectations E[ξ̃(t + 1)] that are Lipschitz continuous in (x, v, z), and with probability

1
∑

t
1

ṽ(t)·t = ∞ while
∑

t
1

(ṽ(t)·t)2 < ∞. Then x(t) converges to x∗ with positive probability if and

only if x̃(t) = ỹ1(t) does.

Proof. The argument is exactly analogous to that of the proof of Lemma 2.

Now choose ξ̃(t) satisfying the conditions of Lemma 7, agreeing with ξ(t) in the second and

third coordinates, and such that the unique fixed point of the corresponding ϕ̃σ(x) is x∗. To do so,

choose an open neighborhood U of (x∗, α, q) such that x∗ is the unique fixed point of ϕσ(x) with

(x, v, q) ∈ Ū . Let ξ̃(t) = ξ(t) on the closure Ū of U. For each (v, z), let ξ̃(t) be constant in x outside

of the neighborhood U.

Then, since we have not modified the process ỹ(t) in the second or third coordinates, we

continue to have ∑t
1

ṽ(t)·t = ∞ while ∑t
1

(ṽ(t)·t)2 < ∞ with probability 1. Also, ξ̃(t) and ξ(t)

have the same support because conditional on every interior (x, v, z), ξ(t) has the same support.

Therefore, making ξ̃(t) be constant in x does not affect its support. Lipschitz continuity follows

from Lipschitz continuity of the expectation of ξ(t) in (x, v, z), which we checked in the proof of

Proposition 8.

Since x∗ is the unique fixed point of ϕσ(x), by the same argument as in Proposition 8, we have

x̃(t) → x∗ almost surely. Note that this step uses Lipschitz continuity of E[ξ̃(t + 1)]. So by Lemma

7, x(t) → x∗ with positive probability.

Finally, we need the following lemma to relate the inflow accuracy function induced by some

strategy σ∗ and viral accuracy process induced by strategies sufficiently close to σ∗.
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Lemma 8. For each ϵ′, ϵ′′ > 0 p ∈ (0, 1), strategy σ∗ with ϕσ∗(x)−x ≥ 2ϵ′ for every x ≤ p+2ϵ′, there

is some N and δ > 0 so that for every σ with ∥ σ − σ∗ ∥2< δ, we have Pσ[x(t) ≥ p + ϵ′/2] > 1 − ϵ′′

for every t ≥ N .

Proof. Let ϕσ,z(x) :=
∑

s∈{−1,1}

∑KR
kR=0

∑KV
kV =0 E[σ(s,kR,kV )]·P[s|ω=1]·P[Binom(KR,z)=kR]·P[Binom(KV ,x)=kV ]

C .

Because ϕσ,z(x) is polynomial in z, σ, and x, there exists δ > 0 such that ϕσ,z(x) − x ≥ ϵ′ for every

x ≤ p + ϵ′ when ∥σ∗ − σ∥2 < δ and |z − q| < δ.

For the remainder of the proof, fix σ in this neighborhood. We will observe at the end of the

proof that the bounds we will prove are uniform in the choice of σ.

Let p′ > p + ϵ′ be the largest number in (0, 1) such that

ϕσ(x) − x ≥ ϵ′/2 (19)

for all x ≤ p′. Let N1 < N2 be positive integers with N2 ≥ bN1 for some integer b > 1. We will

first show that for N1 and N2 large enough, the probability that x(t) < p′ for all t ∈ [N1, N2] is

small. We will then show that if x(t1) > p′ for some N1 ≤ t1 < N2, then the probability that

x(N2) < p + ϵ′/2 is small.

By the Chernoff bound applied to z(t) and compactness of the set of strategies σ under consid-

eration, we can choose a constant B > 0 independent of σ such that

max
x∈[0,1]

|ϕσ,z(t)(x) − ϕσ(x)| < ϵ′/4 (20)

with probability at least 1 − 2e−Bt for t sufficiently large.

Make ϵ′ smaller if necessary so that 0 < α − ϵ′ < α + ϵ′ < 1. For constants T, D > 0, define the

event

C = inf
t≥T

E[ t

v · t + mt+1

mt+1
C

] > D and sup
t≥T

|v(t) − α| < ϵ′.

Since v(t) → α almost surely and since this process is unaffected by σ and independent of x(t), z(t),

we may find T, D > 0 independent of σ such that P[C ] ≥ 1 − ϵ′′/2.

Recall that we can decompose y(t) as

y(t + 1) = y(t) + 1
v(t) · t

· h(y(t)) + M(t + 1),
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where h(y(t)) is deterministic and M(t + 1) is a martingale. As in the proof of Theorem 4,

h1(y(t)) = E[ v(t)·t
v(t)·t+mt+1

mt+1
C | v(t)] · (ϕσ,z(t)(x(t)) − x(t)). Also, we have |M(t)| ≤ 1/(t · (α − ϵ) + 1)

for all t ≥ T on the event C . So by Theorem C.7 from Appendix C of Borkar (2023), for any β > 0

and any t1 and t2,

P

 sup
t1<t<t2

∣∣∣∣∣∣
t∑

i=t1

M(i)

∣∣∣∣∣∣ > β

 ≤ 4e
− β2∑t2

i=t1
(1/(α−ϵ))2/i2

. (21)

Consider the event E that x(t) < p′ for all N1 ≤ t ≤ N2. Suppose inequality (20) holds for all

N1 ≤ t < N2 and condition on the event C . Then we have, when N1, N2 ≥ T,

x(N2) − x(N1) =
N2−1∑
t=N1

E[ v(t) · t

v(t) · t + mt+1

mt+1
C

| v(t)] ·
ϕσ,z(t)(x(t)) − x(t)

v(t) · t
+

N2−1∑
t=N1

M(t + 1)

=
N2−1∑
t=N1

E[ t

v(t) · t + mt+1

mt+1
C

| v(t)]
{

ϕσ,z(t)(x(t)) − ϕσ(x(t))
t

+ ϕσ(x(t)) − x(t)
t

}
+

N2−1∑
t=N1

M(t + 1)

≥
N2−1∑
t=N1

D · ϵ′/4 · 1
t

+
N2−1∑
t=N1

M(t + 1) by inequalities (19) and (20)

≥ D(ϵ′/4)(log(N2) − log(N1)) +
N2−1∑
t=N1

M(t + 1).

When event E holds, the right-hand side must be at most p′. Taking b and therefore N2/N1

sufficiently large, we can assume that

D(ϵ′/4)(log(N2) − log(N1)) > 2p′.

By equation (21), the absolute value of the sum of martingales is greater than p′ with probability

at most

4e

− (p′)2∑N2
i=N1

(1/(α−ϵ))2/i2
≤ 4e

− (p′)2N1N2
2(1/(α−ϵ))2·(N2−N1) < 4e

− (p′)2N1
2(1/(α−ϵ))2 .

Along with the Chernoff bound, this gives an upper bound on the probability of event E given C .

If event E does not hold, there exists some N1 ≤ t ≤ N2 such that x(t) ≥ p′. Choose t1 so that

t1 − 1 is the largest such t.

Suppose x(N2) ≤ p + ϵ′/2. For N1 sufficiently large, this implies t1 ≤ N2. So we must have

x(N2) − x(t1) ≤ ((p + ϵ′/2) − p′) < −ϵ′.
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On the other hand, when inequality (20) holds for all N1 ≤ t < N2 and conditional on C , for

N1, N2 ≥ T we have

x(N2) − x(t1) =
N2−1∑
t=t1

E[ v(t) · t

v(t) · t + mt+1

mt+1
C

| v(t)] ·
ϕσ,z(t)(x(t)) − x(t)

v(t) · t
+

N2−1∑
t=t1

M(t + 1)

=
N2−1∑
t=t1

E[ t

v(t) · t + mt+1

mt+1
C

| v(t)] ·
(

ϕσ,z(t)(x(t)) − ϕσ(x(t))
t

+ ϕσ(x(t)) − x(t)
t

)
+

N2−1∑
t=t1

M(t + 1)

≥
N2−1∑
t=t1

D · ϵ′/4 · 1
t

+
N2−1∑
t=t1

M(t + 1) by inequalities (19) and (20)

≥ D · (ϵ′/4)(log(N2) − log(t1)) +
N2−1∑
t=t1

M(t + 1).

Applying equation (21) with β = ϵ′, the absolute value of the sum of martingales is greater than ϵ′

with probability at most

4e

− (ϵ′)2∑N2
i=t1

(1/(α−ϵ))2/i2
≤ 4e

− (p′)2t1
2(1/(α−ϵ))2 .

When this does not hold and the Chernoff bounds apply, x(N2) − x(t1) is greater than −ϵ′ and

therefore x(N2) > p + ϵ′/2 if N1 is sufficiently large. This gives an upper bound on the probability

that x(N2) ≤ p + ϵ′/2.

We conclude that

Pσ[x(N2) < p + ϵ′/2 | C ] ≤ 4e
− (p′)2N1

2(1/(α−ϵ))2 +
N2−1∑

t=N1+1
4e

− (p′)2t

2(1/(α−ϵ))2 + 2
N2−1∑
t=N1

e−Bt

for N1 sufficiently large. Because the second and third terms are geometric series, we can choose

N1 sufficiently large so that the right hand side is less than ϵ′′/2 for all N2 ≥ bN1. We can make

this choice uniformly in σ (subject to the constraint ∥σ − σ∗∥2 < δ). Since Pσ[C ] ≥ 1 − ϵ′′/2, for

N1 sufficiently large, we have

Pσ[x(t) ≥ p + ϵ′/2] > 1 − ϵ′′

for t ≥ N = bN1.

Finally, we present the proof of Theorem 3.
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Proof. Step 1: There exists K̄V so that whenever KV ≥ K̄V , there is no limit equilibrium where

all steady states are strictly larger than q.

Let 1/2+η be the probability that P[Binom(KR, 1−q) ≥ C], so we have η > 0 by the hypothesis.

Find K̄ ′
V large enough so that

⌊
0.5η · K̄ ′

V

⌋
> KR + 1. By Chebyshev’s inequality, find K̄ ′′

V large

enough so that P[Binom(K̄ ′′
V , 0.5 + 0.5η) > K̄ ′′

V · (0.5 + 0.25η)] > 1 − 0.5η. Let K̄V = max(K̄ ′
V , K̄ ′′

V ).

For KV ≥ K̄V , in any limit equilibrium σ∗ where σ∗ follows the majority of the viral news

feed whenever there is a consensus of size larger than 0.5 + 0.25η, there is a misleading steady

state. To see this, we bound ϕσ∗(0.5 − 0.5η). Since KV ≥ K̄ ′′
V , there is more than 1 − 0.5η

chance that there are more than 0.5 + 0.25η fraction of wrong stories in the viral news feed.

When this happens, σ∗ must share C wrong stories from the regular news feed in the event that

there are at least C wrong stories there, which happens with probability at least 1/2 + η. So,

ϕσ∗(0.5 − 0.5η) < 0.5η + (1/2 − η) = 0.5 − 0.5η. As ϕσ∗(0) > 0, ϕσ∗(0.5 − 0.5η) < 0.5 − 0.5η, and

ϕσ∗(·) is a polynomial function, we conclude there must be a fixed point in (0, 0.5 − 0.5η) that is

stable from both sides. This fixed point is a steady state by Theorem 4.

It now suffices to show that in a limit equilibrium σ∗ where KV ≥ K̄V and all steady states are

strictly larger than q, the equilibrium strategy follows the majority of the viral news feed whenever

there is a consensus of size larger than 0.5 + 0.25η. Because the lowest steady state induced by σ∗

is strictly larger than q, we may find ϵ′ > 0 so that ϕσ∗(x) − x ≥ 2ϵ′ for every x ≤ q + 2ϵ′. Let

O be the finite class of all observations where there is a majority of size at least 0.5 + 0.25η in

the viral news feed. For each o ∈ O, if the agent has a prior belief about the distribution of viral

accuracy that assigns probability 1 to the segment [q + ϵ′/2, 1], then the posterior belief assigns

probability strictly more than 0.5 to the state of nature matching the viral news feed majority.

This is because KV ≥ K̄ ′
V (so ⌊0.5η · KV ⌋ > KR + 1) and because viral news feed stories are more

precise than regular news feed stories. By continuity of Bayesian updating, the same must also hold

when the prior assigns probability less than ho > 0 to the complement of the segment [q + ϵ′/2, 1].

Let h = mino∈O ho > 0. Applying Lemma 8 with ϵ′, ϵ′′ = h/2, and p = q, we find N and δ > 0

such that for every σ with ∥ σ − σ∗ ∥2< δ, we have Pσ[x(t) ≥ q + ϵ′/2] > 1 − h/2 for every t ≥ N .

In the sequence of converging equilibria σ(j) → σ∗, eventually ∥ σ(j) − σ∗ ∥2< δ. Also, the number

of agents grows so that eventually, N/nj < h/2. So in equilibria σ(j) with large enough j, agents

(who have uniformly random beliefs about their location in the sequence) have prior beliefs about
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viral accuracy that assign probability more than 1 − h to [q + ϵ′/2, 1]. So σ(j) follows the viral news

feed majority for all observations in O. The same must then hold for the limit σ∗.

Step 2: There is no limit equilibrium where 1/2 is a steady state.

We will first define an important class of strategies. For a strategy σ and for 0 < kR < KR, say

σ(si, kR, kV ) is maximally negative if it is sharing as many negative stories from the regular news

feed as possible, maximally positive if it is sharing as many positive stories from the regular news

feed as possible, and strictly mixing if it is neither maximally negative nor maximally positive.

Say a strategy σ is a cutoff strategy if for every fixed k̄V , there exists a cutoff κ ∈ {0, 1, 2, ..., KR}

so that σ(si, kR, k̄V ) is maximally negative whenever kR + 1{si = 1} < κ, maximally positive

whenever kR + 1{si = 1} > κ, and it is not the case that σ(si, kR, k̄V ) is maximally negative for

every kR, si pair such that kR + 1{si = 1} = κ. So the cutoff κ(k̄V ) is the minimum required

number of positive signals of precision q to switch the strategy from being maximally negative to

either being maximally positive or mixing between the two kinds of stories, after the agent sees k̄V

positive stories in the viral news feed. When κ = 0, the strategy σ(·, ·, k̄V ) is maximally positive

for all realizations of si and kR. When κ = KR, the strategy σ(·, ·, k̄V ) is maximally negative for

all realizations of si and kR.

We need the following lemma:

Lemma 9. Every limit equilibrium is a cutoff strategy.

Proof. Consider any converging sequence of equilibria (σ(j)), where the equilibrium σ(j) is for a

society with nj agents and nj → ∞. In the society with nj agents, suppose the agent observes viral

news story realizations sV
1 , ..., sV

KV
and 1 ≤ k ≤ K + 1 total positive stories out of the regular news

story feed and private signal. We show that for all j large enough, the posterior belief in {ω = 1}

following this observation is strictly higher than that following the same observation but with only

k − 1 positive stories in the regular news feed and the private signal. This would show that σj is a

cutoff strategy for all j large enough, which means the limit must also be a cutoff strategy.

For any sufficiently small ϵ > 0, the probability that (x(τ), z(τ)) at a uniformly random position

τ in equilibrium σ(j) is in [ϵ, 1 − ϵ] × [q − ϵ, q + ϵ] converges to 1 as j → ∞. This is because

ϕσ(x) − x is uniformly bounded above 0 for all x close enough to 0 and ϕσ(x) − x is uniformly

bounded below 0 for all x close enough to 1, across all strategies, so applying Lemma 8 shows
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that Pσj [x(τ) ∈ [ϵ, 1 − ϵ]] → 1 as j → ∞ if ϵ > 0 is small enough. The fact that we must have

Pσj [z(τ) ∈ [q − ϵ, q + ϵ]] → 1 as j → ∞ follows from the law of large numbers.

Let A be the event that (x(τ), z(τ)) ∈ [ϵ, 1 − ϵ] × [q − ϵ, q + ϵ]. Let f (j)(x|A) be the discrete

distribution of viral accuracy in society j at a random position, conditional on the event A. Also

using the fact that z(τ) ∈ [q − ϵ, q + ϵ] conditional on A, we get

Pσj [sV
1 , ..., sV

KV
, k, A | ω = 1]

≥Pσj [A | ω = 1] · (q − ϵ)k · (1 − q − ϵ)K−k
∫ KV∏

kV =1
x

1{sV
kV

=1} · (1 − x)1{sV
kV

=−1}
f j(x | A)dx. (22)

Pσj [sV
1 , ..., sV

KV
, k, A | ω = −1]

≤Pσj [A | ω = −1] · (1 − q + ϵ)k · (q + ϵ)K−k
∫ KV∏

kV =1
(1 − x)1{sV

kV
=1} · x

1{sV
kV

=−1}
f j(x | A)dx. (23)

Pσj [sV
1 , ..., sV

KV
, k − 1, A | ω = 1]

≤Pσj [A | ω = 1] · (q + ϵ)k−1 · (1 − q + ϵ)K−k+1 ·
∫ KV∏

kV =1
x

1{sV
kV

=1} · (1 − x)1{sV
kV

=−1}
f j(x | A)dx.

(24)

Pσj [sV
1 , ..., sV

KV
, k − 1, A | ω = −1]

≥Pσj [A | ω = −1] · (1 − q − ϵ)k−1 · (q − ϵ)K−k+1 ·
∫ KV∏

kV =1
(1 − x)1{sV

kV
=1} · x

1{sV
kV

=−1}
f j(x | A)dx.

(25)
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We have

Pσj [sV
1 , ..., sV

KV
, k | ω = 1]

Pσj [sV
1 , ..., sV

KV
, k | ω = −1]

/
Pσj [sV

1 , ..., sV
KV

, k − 1 | ω = 1]
Pσj [sV

1 , ..., sV
KV

, k − 1 | ω = −1]
(26)

=
Pσj [sV

1 , ..., sV
KV

, k, A | ω = 1] + Pσj [sV
1 , ..., sV

KV
, k, Ac | ω = 1]

Pσj [sV
1 , ..., sV

KV
, k − 1, A | ω = 1] + Pσj [sV

1 , ..., sV
KV

, k − 1, Ac | ω = 1]
(27)

×
Pσj [sV

1 , ..., sV
KV

, k − 1, A | ω = −1] + Pσj [sV
1 , ..., sV

KV
, k − 1, Ac | ω = −1]

Pσj [sV
1 , ..., sV

KV
, k, A | ω = −1] + Pσj [sV

1 , ..., sV
KV

, k, Ac | ω = −1]
(28)

Using (22) and (24), the term (27) is at least

(q − ϵ)k(1 − q − ϵ)K−k{Pσj [A | ω = 1]
∫

ΠKV
kV =1x

1{sV
kV

=1} · (1 − x)1{sV
kV

=−1}
f j(x | A)dx} + Pσj [sV

1 , ..., sV
KV

, k, Ac | ω = 1]

(q + ϵ)k−1(1 − q + ϵ)K−k+1{Pσj [A | ω = 1]
∫

ΠKV
kV =1x

1{sV
kV

=1} · (1 − x)1{sV
kV

=−1}
f j(x | A)dx} + Pσj [sV

1 , ..., sV
KV

, k − 1, Ac | ω = 1]
.

For ϵ > 0 small enough, we have (q − ϵ)k · (1 − q − ϵ)K−k > (q + ϵ)k−1 · (1 − q + ϵ)K−k+1 and also

Pσj [A | ω = 1] ·
∫ ∏KV

kV =1 x
1{sV

kV
=1} · (1 − x)1{sV

kV
=−1}

f j(x | A)dx is bounded away from 0 across all

j. Also, for any ϵ > 0, Pσj [sV
1 , ..., sV

KV
, k, Ac | ω = 1] → 0 and Pσj [sV

1 , ..., sV
KV

, k − 1, Ac | ω = 1] → 0

as j → ∞. This shows that for all ϵ > 0 small enough, the term (27) is strictly larger than 1 for

all large enough j. We can similarly use (23) and (25) to show that for ϵ > 0 small enough, the

term (28) is strictly larger than 1 for all large enough j. Thus we conclude for all large enough j,

P
σj [sV

1 ,...,sV
KV

,k|ω=1]
P

σj [sV
1 ,...,sV

KV
,k|ω=−1]/

P
σj [sV

1 ,...,sV
KV

,k−1|ω=1]
P

σj [sV
1 ,...,sV

KV
,k−1|ω=−1] > 1 as needed.

In any limit equilibrium, since σ∗ is the limit of cutoff strategies, σ∗ must be a cutoff strategy.

In a steady state with viral accuracy 1/2, the distribution of stories in the viral news feed is the

same conditional on either state of the world. For any fixed realization of the viral news feed, the

expected number of positive regular news stories shared by σ∗ is weakly increasing in kR+1{si = 1}.

In fact, it must be strictly increasing somewhere, since σ∗ shares zero positive regular stories when

kR = 0, si = −1 and shares C positive regular stories when kR = KR, si = 1. Since q > 1/2, the

distribution of kR +1{si = 1} in the state ω = 1 first-order stochastically dominates its distribution

in the state ω = −1. Thus, the number of shared positive regular news stories is strictly positively

correlated with ω, so ϕσ∗(1/2) > 1/2.

Step 3: There is no limit equilibrium where all steady states are strictly larger than 1/2 but

not all steady states are strictly larger than q.

By way of contradiction, suppose such a limit equilibrium σ∗ exists whose lowest steady state
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is p with 1/2 < p ≤ q.

An implication of Lemma 9 is that σ∗ is a cutoff strategy. We can show that it also has more

structure. When k̄V > KV /2, we must have κ ≤
⌈

KR+1
2

⌉
. When k̄V < KV /2, we must have

κ ≥
⌈

KR+1
2

⌉
. When k̄V = KV /2, the cutoff is κ =

⌈
KR+1

2

⌉
. To see why the first restriction holds

(the other ones are symmetric), note that if an agent’s belief about the distribution over viral

accuracy puts probability 1 on the segment [1/2 + ϵ′/2, 1], the agent must think ω = 1 is strictly

more likely when there is a strictly majority of positive stories in the viral news feed and a majority

of positive stories among the private signal and the regular news feed stories. Thus, such an agent

would use a cutoff no larger than
⌈

KR+1
2

⌉
. By an argument using Lemma 8 similar to the one in

Step 1, we can show that in the converging sequence of equilibria σ(j) → σ∗, the same also holds

for σ(j) for all j large enough.

Now consider ϕσ(p) for various cutoff strategies σ. This accuracy is maximized by a cutoff

strategy that computes the Bayesian posterior probabilities of the two states of nature after every

observation (treating stories in the viral news feed as signals with precision p) and maximally

shares the stories in the direction of the more likely state. Let the optimal cutoff after seeing kV

positive viral news feed stories be κopt
kV

. We argue that accuracy after seeing kV positive viral news

feed stories is single-peaked in cutoff choice, with the peak at κopt
kV

. For κ′ ≥ κopt
kV

, compare the

behavior given by the cutoff κ′ and the cutoff κ′ + 1. These two cutoffs imply the same behavior for

kR +1{si = 1} ≥ κ′ +2 and kR +1{si = 1} ≤ κ′ −1, and thus have the same accuracy in those cases.

When kR + 1{si = 1} = κ′ + 1, the state {ω = 1} is strictly more likely since κ′ + 1 > κopt
kV

. Using

the cutoff κ′ leads to maximally positive sharing in this case, which cannot be improved. When

kR +1{si = 1} = κ′, the state {ω = 1} is weakly more likely since κ′ ≥ κopt
kV

. Using the cutoff κ′ +1

leads to maximally negative sharing in this case, which cannot be made worse. This comparison

thus shows the cutoff κ′ must generate weakly higher accuracy than cutoff κ′ + 1. Similarly, we can

show that if κ ≤ κopt
kV

, then cutoff κ generates weakly higher accuracy than cutoff κ − 1.

This shows the number of correct stories shared by σ∗ at viral accuracy p and conditional on

some number kV of positive viral news feed stories is bounded by the conditional accuracy of the

two extremal cutoff behaviors. For kV > KV /2, we know that the cutoff used by σ∗ is between 0

and
⌈

KR+1
2

⌉
, which respectively correspond to always maximally sharing in the positive direction

and always following the majority among the private signal and the regular news feed stories. The
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conditional accuracy of the cutoff strategy with cutoff
⌈

KR+1
2

⌉
is the accuracy of the majority

among KR + 1 signals of precision q, which is some number strictly higher than q.

We now bound the conditional accuracy of the cutoff strategy with cutoff 0. The conditional

probability of {ω = 1} given kV > KV /2 positive viral news stories is some number p′ ≥ p > 1/2,

with p′ > p if kV ≥ (KV /2) + 1. Consider the jth regular news story shared for 1 ≤ j ≤ C. This

will be positive, except when kR ≤ j − 1. The event {kR ≤ j − 1} happens with some probability

ζ ′ when ω = 1 and some probability ζ ′′ when ω = −1. The probability that the jth regular story

shared matches the state is therefore p′ · (1 − ζ ′) + (1 − p′) · ζ ′′.

For p′ ≤ q, this expression is no smaller than p′. This is because j ≤ C ≤ KR/2, so we have

ζ ′/ζ ′′ ≤ (1 − q)/q which implies ζ ′′ ≥ q
1−q ζ ′. Making this substitution we find that accuracy is no

smaller than p′ + ζ ′ · ( q
1−q · (1 − p′) − p′) ≥ p′ + ζ ′ · ( q

1−q (1 − q) − q) = p′, where we used p′ ≤ q in

the last inequality.

As p′ increases beyond q, the expression is bounded between its value when p′ = q and its

value when p′ = 1. The former is at least p′, and the latter is 1 − ζ ′. But ζ ′ is no larger than the

probability that the regular news feed majority is wrong, which is 1 − q′′ for some q′′ > q. Hence,

1 − ζ ′ ≥ q′′. So for any value of p′, p′ · (1 − ζ ′) + (1 − p′) · ζ ′′ ≥ min(p′, q′′).

Thus, the conditional accuracy of the σ∗ strategy given any kV > KV /2 is bounded below by

min(p, q′′) (since p′ ≥ p whenever kV > KV /2), and it is bounded below by some min(p′, q′′) for

p′ > p for any kV ≥ KV /2+1. An analogous argument applies to the case of kV < KV /2. So overall

the average accuracy of this strategy is strictly higher than min(p, q′′) ≥ p. This is a contradiction

as it shows ϕσ∗(p) > p.

B Details of the Equilibrium Simulations for λ > λ∗

In these simulations, we fix virality weight λ = 1, story precision q = 0.55, and sharing capacity

C = 3. We consider three different values of the news-feed size, K ∈ {6, 8, 10}.

For each of these three parameter specifications, we first consider all candidate symmetric pure-

strategy limit equilibria. Under any symmetric pure strategy, the likelihood ratio of ω = 1 to

ω = −1 after observing k = K/2 positive news-feed stories is 1, whereas the likelihood ratio after

observing k = K/2 + 1, K/2 + 2, ..., K positive stories is the reciprocal of the likelihood ratio after
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observing K − k such stories. For each k ∈ {K/2 + 1, ..., K}, the likelihood ratio falls into one of

the following three cases: (1) between 1−q
q and q

1−q , so it is optimal for the agent to follow their

private signal; (2) below 1−q
q , so it is optimal for the agent to share as many negative stories as

possible; (3) above q
1−q , so it is optimal for the agent to share as many positive stories as possible.

Each of the 3K/2 assignments of these three cases to various values of k ∈ {K/2 + 1, ..., K} implies

a best-responding strategy, and we conduct 5,000 repetitions of a numerical simulation with 5,000

agents to check whether the likelihood ratios of the various observations generated by this strategy

indeed belong to the same cases. In this way, we find no pure-strategy limit equilibrium for K = 6

and K = 8, and we find one pure-strategy limit equilibrium as described in the main text.

We next look for symmetric mixed-strategy limit equilibria with the following structure: the

likelihood ratio after observing K/2+1 positive stories is exactly equal to q
1−q , whereas the likelihood

ratio after observing k > K/2 + 1 positive stories is strictly above q
1−q . This requires the agent to

follow their private signal with some probability p ∈ [0, 1] when they see K/2+1 positive stories. For

each of K ∈ {6, 8, 10}, we consider all mixed strategies with the values p = 0, 0.05, 0.10, ..., 0.95, 1.0.

For each such mixed strategy, we conduct 10,000 repetitions of a numerical simulation with 10,000

agents. These simulations suggest that no such mixed equilibria exist for K = 10, for the likelihood

ratio associated with a news feed with 6 positive stories is always significantly below q
1−q for any

p in the grid we considered. For K = 6 and K = 8, we instead find that the likelihood ratio

associated with a news feed with K/2 + 1 positive stories is below q
1−q for low values of p but

above q
1−q for high values of p, suggesting the existence of a mixed limit-equilibrium. Zooming

in on the segment p ∈ [0, 0.4] for K = 6 and the segment p ∈ [0.6, 1] for K = 8, as suggested

by the initial set of simulations, we conduct further simulations with the values of p on a grid

with width 0.02. For each strategy, we conduct 30,000 repetitions of a numerical simulation with

20,000 agents. These simulations allow us to estimate the equilibrium in a society with t agents for

each t ∈ {200, 201, ..., 20000} by linearly interpolating the value of p that would set the likelihood

ratio of an observation with K/2 + 1 positive stories to be exactly q
1−q . These estimated mixing

probabilities in finite-society equilibria are shown in Figure 4 (solid curves).

Then, to estimate limit equilibria, we use non-linear least squares to fit a rational function of

the form t 7→ at+b
ct+1 to approximate the equilibrium mixing probability pt in a society with t agents.

The best-fitting rational functions are shown as dashed curves in Figure 4, which fit very closely
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Figure 4: Estimated equilibrium mixing probabilities for different population sizes (solid curves)
and estimated rational function (dashed curves).

to the estimated mixing probabilities. We divide the estimated coefficients a and c in the rational

function to estimate limt→∞ pt. This procedure estimates limt→∞ pt ≈ 0.192605 for K = 6 and

limt→∞ pt ≈ 0.7211451 for K = 8. The inflow accuracy functions of these two limit strategies in

their respective environments are plotted in Figure 5. For K = 8, the misleading steady state

resembles a touchpoint.

Finally, we conduct a final set of numerical simulations to estimate the long-run distribution of

viral accuracy under the limit equilibrium strategies. For each of K = 6, 8, 10, we conduct 10,000

repetitions of a numerical simulation with 40,000 agents, using the estimated limit equilibrium

strategies. The distributions of viral accuracy by period 40,000 are shown in Figure 6, where we

see faster convergence to a steady state for the K = 10 pure-strategy limit equilibrium than the

K = 6 and K = 8 mixed-strategy limit equilibria.
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Figure 5: Inflow accuracy functions of the estimated limit equilibria.
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Figure 6: Distributions of viral accuracy by period 40,000 under estimated limit equilibria. Each
histogram shows results from 10,000 simulations.
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